Macaulay Brackets
   HOME
*





Macaulay Brackets
Macaulay brackets are a notation used to describe the ramp function :\ = \begin 0, & x < 0 \\ x, & x \ge 0. \end A popular alternative transcription uses angle brackets, ''viz.'' \langle x \rangle.Lecture 12: Beam Deflections by Discontinuity Functions.
Introduction to Aerospace Structures. Department of Aerospace Engineering Sciences, University of Colorado at Boulder Another commonly used notation is x+ or (x)+ for the part of x, which avoids conflicts with \ for

picture info

Ramp Function
The ramp function is a unary real function, whose graph is shaped like a ramp. It can be expressed by numerous definitions, for example "0 for negative inputs, output equals input for non-negative inputs". The term "ramp" can also be used for other functions obtained by scaling and shifting, and the function in this article is the ''unit'' ramp function (slope 1, starting at 0). In mathematics, the ramp function is also known as the positive part. In machine learning, it is commonly known as a ReLU activation function or a rectifier in analogy to half-wave rectification in electrical engineering. In statistics (when used as a likelihood function) it is known as a tobit model. This function has numerous applications in mathematics and engineering, and goes by various names, depending on the context. There are differentiable variants of the ramp function. Definitions The ramp function () may be defined analytically in several ways. Possible definitions are: * A piec ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Positive Number
In mathematics, the sign of a real number is its property of being either positive, negative, or zero. Depending on local conventions, zero may be considered as being neither positive nor negative (having no sign or a unique third sign), or it may be considered both positive and negative (having both signs). Whenever not specifically mentioned, this article adheres to the first convention. In some contexts, it makes sense to consider a signed zero (such as floating-point representations of real numbers within computers). In mathematics and physics, the phrase "change of sign" is associated with the generation of the additive inverse (negation, or multiplication by −1) of any object that allows for this construction, and is not restricted to real numbers. It applies among other objects to vectors, matrices, and complex numbers, which are not prescribed to be only either positive, negative, or zero. The word "sign" is also often used to indicate other binary aspects of mathemat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Set Notation
In set theory and its applications to logic, mathematics, and computer science, set-builder notation is a mathematical notation for describing a set by enumerating its elements, or stating the properties that its members must satisfy. Defining sets by properties is also known as set comprehension, set abstraction or as defining a set's intension. Sets defined by enumeration A set can be described directly by enumerating all of its elements between curly brackets, as in the following two examples: * \ is the set containing the four numbers 3, 7, 15, and 31, and nothing else. * \=\ is the set containing , , and , and nothing else (there is no order among the elements of a set). This is sometimes called the "roster method" for specifying a set. When it is desired to denote a set that contains elements from a regular sequence, an ellipses notation may be employed, as shown in the next examples: * \ is the set of integers between 1 and 100 inclusive. * \ is the set of natura ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Shear And Moment Diagram
Shear force and bending moment diagrams are analytical tools used in conjunction with structural analysis to help perform structural design by determining the value of shear forces and bending moments at a given point of a structural element such as a beam. These diagrams can be used to easily determine the type, size, and material of a member in a structure so that a given set of loads can be supported without structural failure. Another application of shear and moment diagrams is that the deflection of a beam can be easily determined using either the moment area method or the conjugate beam method. Convention Although these conventions are relative and any convention can be used if stated explicitly, practicing engineers have adopted a standard convention used in design practices. Normal convention The normal convention used in most engineering applications is to label a positive shear force - one that spins an element clockwise (up on the left, and down on the right). Likew ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Macaulay's Method
Macaulay’s method (the double integration method) is a technique used in structural analysis to determine the deflection of Euler-Bernoulli beams. Use of Macaulay’s technique is very convenient for cases of discontinuous and/or discrete loading. Typically partial uniformly distributed loads (u.d.l.) and uniformly varying loads (u.v.l.) over the span and a number of concentrated loads are conveniently handled using this technique. The first English language description of the method was by Macaulay. The actual approach appears to have been developed by Clebsch in 1862.J. T. Weissenburger, ‘Integration of discontinuous expressions arising in beam theory’, AIAA Journal, 2(1) (1964), 106–108. Macaulay's method has been generalized for Euler-Bernoulli beams with axial compression, W. H. Wittrick, "A generalization of Macaulay’s method with applications in structural mechanics", AIAA Journal, 3(2) (1965), 326–330. to Timoshenko beams,A. Yavari, S. Sarkani and J. N. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Unit Step Function
The Heaviside step function, or the unit step function, usually denoted by or (but sometimes , or ), is a step function, named after Oliver Heaviside (1850–1925), the value of which is zero for negative arguments and one for positive arguments. It is an example of the general class of step functions, all of which can be represented as linear combinations of translations of this one. The function was originally developed in operational calculus for the solution of differential equations, where it represents a signal that switches on at a specified time and stays switched on indefinitely. Oliver Heaviside, who developed the operational calculus as a tool in the analysis of telegraphic communications, represented the function as . The Heaviside function may be defined as: * a piecewise function: H(x) := \begin 1, & x > 0 \\ 0, & x \le 0 \end * using the Iverson bracket notation: H(x) := 0.html" ;"title=">0">>0/math> * an indicator function: H(x) := \mathbf_=\mathbf 1_(x) * ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Singularity Function
Singularity functions are a class of discontinuous functions that contain singularities, i.e. they are discontinuous at their singular points. Singularity functions have been heavily studied in the field of mathematics under the alternative names of generalized functions and distribution theory. The functions are notated with brackets, as \langle x-a\rangle ^n where ''n'' is an integer. The "\langle \rangle" are often referred to as singularity brackets . The functions are defined as: : where: is the Dirac delta function, also called the unit impulse. The first derivative of is also called the unit doublet. The function H(x) is the Heaviside step function: for and for . The value of will depend upon the particular convention chosen for the Heaviside step function. Note that this will only be an issue for since the functions contain a multiplicative factor of for . \langle x-a\rangle^1 is also called the Ramp function. Integration Integrating \langle x-a \rangle^n ca ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]