MacCullagh Ellipsoid
   HOME
*





MacCullagh Ellipsoid
The MacCullagh ellipsoid is defined by the equation: :\frac + \frac + \frac = 2 E, where E is the energy and x,y,z are the components of the angular momentum, given in body's principal reference frame, with corresponding principal moments of inertia A,B,C. The construction of such ellipsoid was conceived by James MacCullagh.On the Rotation of a Solid Body round a Fixed Point; being an account of the late Professor Mac Cullagh's Lectures on that subject. Compiled by the Rev. Samuel Haughton, Fellow of Trinity College, Dublin. ransactions of the Royal Irish Academy, Vol. xxii. p. 139. Read April 23, 1849./ref> See also * Dzhanibekov effect * Poinsot's ellipsoid In classical mechanics, Poinsot's construction (after Louis Poinsot) is a geometrical method for visualizing the torque-free motion of a rotating rigid body, that is, the motion of a rigid body on which no external forces are acting. This motion ha ... References {{Reflist Rigid bodies ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Angular Momentum
In physics, angular momentum (rarely, moment of momentum or rotational momentum) is the rotational analog of linear momentum. It is an important physical quantity because it is a conserved quantity—the total angular momentum of a closed system remains constant. Angular momentum has both a direction and a magnitude, and both are conserved. Bicycles and motorcycles, frisbees, rifled bullets, and gyroscopes owe their useful properties to conservation of angular momentum. Conservation of angular momentum is also why hurricanes form spirals and neutron stars have high rotational rates. In general, conservation limits the possible motion of a system, but it does not uniquely determine it. The three-dimensional angular momentum for a point particle is classically represented as a pseudovector , the cross product of the particle's position vector (relative to some origin) and its momentum vector; the latter is in Newtonian mechanics. Unlike linear momentum, angular m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Moment Of Inertia
The moment of inertia, otherwise known as the mass moment of inertia, angular mass, second moment of mass, or most accurately, rotational inertia, of a rigid body is a quantity that determines the torque needed for a desired angular acceleration about a rotational axis, akin to how mass determines the force needed for a desired acceleration. It depends on the body's mass distribution and the axis chosen, with larger moments requiring more torque to change the body's rate of rotation. It is an extensive (additive) property: for a point mass the moment of inertia is simply the mass times the square of the perpendicular distance to the axis of rotation. The moment of inertia of a rigid composite system is the sum of the moments of inertia of its component subsystems (all taken about the same axis). Its simplest definition is the second moment of mass with respect to distance from an axis. For bodies constrained to rotate in a plane, only their moment of inertia about an ax ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ellipsoid
An ellipsoid is a surface that may be obtained from a sphere by deforming it by means of directional scalings, or more generally, of an affine transformation. An ellipsoid is a quadric surface;  that is, a surface that may be defined as the zero set of a polynomial of degree two in three variables. Among quadric surfaces, an ellipsoid is characterized by either of the two following properties. Every planar cross section is either an ellipse, or is empty, or is reduced to a single point (this explains the name, meaning "ellipse-like"). It is bounded, which means that it may be enclosed in a sufficiently large sphere. An ellipsoid has three pairwise perpendicular axes of symmetry which intersect at a center of symmetry, called the center of the ellipsoid. The line segments that are delimited on the axes of symmetry by the ellipsoid are called the ''principal axes'', or simply axes of the ellipsoid. If the three axes have different lengths, the figure is a triaxial elli ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


James MacCullagh
James MacCullagh (1809 – 24 October 1847) was an Irish mathematician. Early Life MacCullagh was born in Landahaussy, near Plumbridge, County Tyrone, Ireland, but the family moved to Curly Hill, Strabane when James was about 10. He was the eldest of twelve children and demonstrated mathematical talent at an early age. He entered Trinity College Dublin as a student in 1824, winning a scholarship in 1827 and graduating in 1829. Career He became a fellow of Trinity College Dublin in 1832 and was a contemporary there of William Rowan Hamilton. He became a member of the Royal Irish Academy in 1833. In 1835 he was appointed Erasmus Smith's Professor of Mathematics at Trinity College Dublin and in 1843 became Erasmus Smith's Professor of Natural and Experimental Philosophy. He was an inspiring teacher and taught notable scholars, including Samuel Haughton, Andrew Searle Hart, John Kells Ingram and George Salmon. Although he worked mostly on optics, he is also remembered for his ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Tennis Racket Theorem
The tennis racket theorem or intermediate axis theorem is a result in classical mechanics describing the movement of a rigid body with three distinct principal moments of inertia. It is also dubbed the Dzhanibekov effect, after Soviet cosmonaut Vladimir Dzhanibekov who noticed one of the theorem's logical consequences while in space in 1985, although the effect was already known for at least 150 years before that and was included in a book by Louis Poinsot in 1834. The theorem describes the following effect: rotation of an object around its first and third principal axes is stable, while rotation around its second principal axis (or intermediate axis) is not. This can be demonstrated with the following experiment: hold a tennis racket at its handle, with its face being horizontal, and try to throw it in the air so that it will perform a full rotation around the horizontal axis perpendicular to the handle, and try to catch the handle. In almost all cases, during that rotation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Poinsot's Ellipsoid
In classical mechanics, Poinsot's construction (after Louis Poinsot) is a geometrical method for visualizing the torque-free motion of a rotating rigid body, that is, the motion of a rigid body on which no external forces are acting. This motion has four constants: the kinetic energy of the body and the three components of the angular momentum, expressed with respect to an inertial laboratory frame. The angular velocity vector \boldsymbol\omega of the rigid rotor is ''not constant'', but satisfies Euler's equations. Without explicitly solving these equations, Louis Poinsot was able to visualize the motion of the endpoint of the angular velocity vector. To this end he used the conservation of kinetic energy and angular momentum as constraints on the motion of the angular velocity vector \boldsymbol\omega. If the rigid rotor is symmetric (has two equal moments of inertia), the vector \boldsymbol\omega describes a cone (and its endpoint a circle). This is the torque-free precession ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]