MITL0
   HOME
*





MITL0
In model checking, the Metric Interval Temporal Logic (MITL) is a fragment of Metric Temporal Logic (MTL). This fragment is often preferred to MTL because some problems that are undecidable for MTL become decidable for MITL. Definition A MITL formula is an MTL formula, such that each set of reals used in subscript are intervals, which are not singletons, and whose bounds are either a natural number or are infinite. Difference from MTL MTL can express a statement such as the sentence S: "P held exactly ten time units ago". This is impossible in MITL. Instead, MITL can say T: "P held between 9 and 10 time units ago". Since MITL can express T but not S, in a sense, MITL is a restriction of MTL which allows only less precise statements. Problems that MITL avoids One reason to want to avoid a statement such as S is that its truth value may change an arbitrary number of times in a single time unit. Indeed, the truth value of this statement may change as many times as the truth v ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Metric Temporal Logic
Metric temporal logic (MTL) is a special case of temporal logic. It is an extension of temporal logic in which temporal operators are replaced by time-constrained versions like ''until'', ''next'', ''since'' and ''previous'' operators. It is a linear-time logic that assumes both the interleaving and fictitious-clock abstractions. It is defined over a point-based weakly-monotonic integer-time semantics. MTL has been described as a prominent specification formalism for real-time systems.J. Ouaknine and J. Worrell, "On the decidability of metric temporal logic," 20th Annual IEEE Symposium on Logic in Computer Science (LICS' 05), 2005, pp. 188-197. Full MTL over infinite timed words is undecidable.Ouaknine J., Worrell J. (2006) On Metric Temporal Logic and Faulty Turing Machines. In: Aceto L., Ingólfsdóttir A. (eds) Foundations of Software Science and Computation Structures. FoSSaCS 2006. Lecture Notes in Computer Science, vol 3921. Springer, Berlin, Heidelberg Syntax The full metr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Metric Temporal Logic
Metric temporal logic (MTL) is a special case of temporal logic. It is an extension of temporal logic in which temporal operators are replaced by time-constrained versions like ''until'', ''next'', ''since'' and ''previous'' operators. It is a linear-time logic that assumes both the interleaving and fictitious-clock abstractions. It is defined over a point-based weakly-monotonic integer-time semantics. MTL has been described as a prominent specification formalism for real-time systems.J. Ouaknine and J. Worrell, "On the decidability of metric temporal logic," 20th Annual IEEE Symposium on Logic in Computer Science (LICS' 05), 2005, pp. 188-197. Full MTL over infinite timed words is undecidable.Ouaknine J., Worrell J. (2006) On Metric Temporal Logic and Faulty Turing Machines. In: Aceto L., Ingólfsdóttir A. (eds) Foundations of Software Science and Computation Structures. FoSSaCS 2006. Lecture Notes in Computer Science, vol 3921. Springer, Berlin, Heidelberg Syntax The full metr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Model Checking
In computer science, model checking or property checking is a method for checking whether a finite-state model of a system meets a given specification (also known as correctness). This is typically associated with hardware or software systems, where the specification contains liveness requirements (such as avoidance of livelock) as well as safety requirements (such as avoidance of states representing a system crash). In order to solve such a problem algorithmically, both the model of the system and its specification are formulated in some precise mathematical language. To this end, the problem is formulated as a task in logic, namely to check whether a structure satisfies a given logical formula. This general concept applies to many kinds of logic and many kinds of structures. A simple model-checking problem consists of verifying whether a formula in the propositional logic is satisfied by a given structure. Overview Property checking is used for verification when two desc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Undecidable Problem
In computability theory and computational complexity theory, an undecidable problem is a decision problem for which it is proved to be impossible to construct an algorithm that always leads to a correct yes-or-no answer. The halting problem is an example: it can be proven that there is no algorithm that correctly determines whether arbitrary programs eventually halt when run. Background A decision problem is any arbitrary yes-or-no question on an infinite set of inputs. Because of this, it is traditional to define the decision problem equivalently as the set of inputs for which the problem returns ''yes''. These inputs can be natural numbers, but also other values of some other kind, such as strings of a formal language. Using some encoding, such as a Gödel numbering, the strings can be encoded as natural numbers. Thus, a decision problem informally phrased in terms of a formal language is also equivalent to a set of natural numbers. To keep the formal definition simple, it is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Decidable Problem
In computability theory and computational complexity theory, a decision problem is a computational problem that can be posed as a yes–no question of the input values. An example of a decision problem is deciding by means of an algorithm whether a given natural number is prime. Another is the problem "given two numbers ''x'' and ''y'', does ''x'' evenly divide ''y''?". The answer is either 'yes' or 'no' depending upon the values of ''x'' and ''y''. A method for solving a decision problem, given in the form of an algorithm, is called a decision procedure for that problem. A decision procedure for the decision problem "given two numbers ''x'' and ''y'', does ''x'' evenly divide ''y''?" would give the steps for determining whether ''x'' evenly divides ''y''. One such algorithm is long division. If the remainder is zero the answer is 'yes', otherwise it is 'no'. A decision problem which can be solved by an algorithm is called ''decidable''. Decision problems typically appear in mat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Timed Automaton
In automata theory, a timed automaton is a finite automaton extended with a finite set of real-valued clocks. During a run of a timed automaton, clock values increase all with the same speed. Along the transitions of the automaton, clock values can be compared to integers. These comparisons form guards that may enable or disable transitions and by doing so constrain the possible behaviors of the automaton. Further, clocks can be reset. Timed automata are a sub-class of a type hybrid automata. Timed automata can be used to model and analyse the timing behavior of computer systems, e.g., real-time systems or networks. Methods for checking both safety and liveness properties have been developed and intensively studied over the last 20 years. It has been shown that the state reachability problem for timed automata is decidable,Rajeev Alur, David L. Dill. 199A Theory of Timed Automata In Theoretical Computer Science, vol. 126, 183–235, pp. 194–1955 which makes this an interesting su ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Signal Automaton
In automata theory, a field of computer science, a signal automaton is a finite automaton extended with a finite set of real-valued clocks. During a run of a signal automaton, clock values increase all with the same speed. Along the transitions of the automaton, clock values can be compared to integers. These comparisons form guards that may enable or disable transitions and by doing so constrain the possible behaviors of the automaton. Further, clocks can be reset. Example Before formally defining what a signal automaton is, an example will be given. Let one consider the language \mathcal L of signals, over a binary alphabet \, which contains signals \gamma such that: * A appears in singular intervals. That is, the set of times \ is discrete, and * A appears at least once during each interval of length one. This language can be accepted by the automaton pictured nearby. As for finite automaton, incoming arrows represents initial locations and double circle represents accepting l ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Signal (model Checking)
In model checking, a subfield of computer science, a signal or timed state sequence is an extension of the notion of words in a formal language, in which letters are continuously emitted. While a word is traditionally defined as a function from a set of non-negative integers to letters, a signal is a function from a set of real numbers to letters. This allow the use of formalisms similar to the ones of automata theory to deal with continuous signals. Example Consider an elevator. What is formally called a letter could be in fact information such as "someone is pressing the button on the 2nd floor", or "the doors are currently open on the third floor". In this case, a signal indicates, at each time, which is the current state of the elevator and its buttons. The signal can then be analyzed using formal methods to check whether a property such that "each time the elevator is called, it arrives in less than three minutes, assuming that no one held the door for more than fifteen sec ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


PSPACE-complete
In computational complexity theory, a decision problem is PSPACE-complete if it can be solved using an amount of memory that is polynomial in the input length (polynomial space) and if every other problem that can be solved in polynomial space can be transformed to it in polynomial time. The problems that are PSPACE-complete can be thought of as the hardest problems in PSPACE, the class of decision problems solvable in polynomial space, because a solution to any one such problem could easily be used to solve any other problem in PSPACE. Problems known to be PSPACE-complete include determining properties of regular expressions and context-sensitive grammars, determining the truth of quantified Boolean formulas, step-by-step changes between solutions of combinatorial optimization problems, and many puzzles and games. Theory A problem is defined to be PSPACE-complete if it can be solved using a polynomial amount of memory (it belongs to PSPACE) and every problem in PSPACE can be tr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Temporal Logic
In logic, temporal logic is any system of rules and symbolism for representing, and reasoning about, propositions qualified in terms of time (for example, "I am ''always'' hungry", "I will ''eventually'' be hungry", or "I will be hungry ''until'' I eat something"). It is sometimes also used to refer to tense logic, a modal logic-based system of temporal logic introduced by Arthur Prior in the late 1950s, with important contributions by Hans Kamp. It has been further developed by computer scientists, notably Amir Pnueli, and logicians. Temporal logic has found an important application in formal verification, where it is used to state requirements of hardware or software systems. For instance, one may wish to say that ''whenever'' a request is made, access to a resource is ''eventually'' granted, but it is ''never'' granted to two requestors simultaneously. Such a statement can conveniently be expressed in a temporal logic. Motivation Consider the statement "I am hungry". Though its ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]