HOME
*





Multisample Anti-aliasing
Multisample anti-aliasing (MSAA) is a type of spatial anti-aliasing, a technique used in computer graphics to remove jaggies. Definition The term generally refers to a special case of supersampling. Initial implementations of full-scene anti-aliasing ( FSAA) worked conceptually by simply rendering a scene at a higher resolution, and then downsampling to a lower-resolution output. Most modern GPUs are capable of this form of anti-aliasing, but it greatly taxes resources such as texture, bandwidth, and fillrate. (If a program is highly TCL-bound or CPU-bound, supersampling can be used without much performance hit.) According to the OpenGL GL_ARB_multisample specification, "multisampling" refers to a specific optimization of supersampling. The specification dictates that the renderer evaluate the fragment program once per pixel, and only "truly" supersample the depth and stencil values. (This is not the same as supersampling but, by the OpenGL 1.5 specification, the definition ha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Spatial Anti-aliasing
In digital signal processing, spatial anti-aliasing is a technique for minimizing the distortion artifacts (aliasing) when representing a high-resolution image at a lower resolution. Anti-aliasing is used in digital photography, computer graphics, digital audio, and many other applications. Anti-aliasing means removing signal components that have a higher frequency than is able to be properly resolved by the recording (or sampling) device. This removal is done before (re)sampling at a lower resolution. When sampling is performed without removing this part of the signal, it causes undesirable artifacts such as black-and-white noise. In signal acquisition and audio, anti-aliasing is often done using an analog anti-aliasing filter to remove the out-of-band component of the input signal prior to sampling with an analog-to-digital converter. In digital photography, optical anti-aliasing filters made of birefringent materials smooth the signal in the spatial optical domain. The anti-a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Stencil Buffer
A stencil buffer is an extra data buffer, in addition to the ''color buffer'' and ''Z-buffer'', found on modern graphics hardware. The buffer is per pixel and works on integer values, usually with a depth of one byte per pixel. The Z-buffer and stencil buffer often share the same area in the RAM of the graphics hardware. In the simplest case, the stencil buffer is used to limit the area of rendering (stenciling). More advanced usage of the stencil buffer makes use of the strong connection between the Z-buffer and the stencil buffer in the rendering pipeline. For example, stencil values can be automatically increased/decreased for every pixel that fails or passes the depth test. The simple combination of depth test and stencil modifiers make a vast number of effects possible (such as stencil shadow volumes, Two-Sided Stencil, compositing, decaling, dissolves, fades, swipes, silhouettes, outline drawing, or highlighting of intersections between complex primitives) though they o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Morphological Antialiasing
Morphological antialiasing (MLAA) is a technique for minimizing the distortion artifacts known as aliasing when representing a high-resolution image at a lower resolution. Contrary to multisample anti-aliasing (MSAA), which does not work for deferred rendering, MLAA is a post-process filtering which detects borders in the resulting image and then finds specific patterns in these. Anti-aliasing is achieved by blending pixels in these borders, according to the pattern they belong to and their position within the pattern. Enhanced subpixel morphological antialiasing, or SMAA, is an image-based GPU-based implementation of MLAA developed by Universidad de Zaragoza and Crytek. See also * Fast approximate anti-aliasing * Multisample anti-aliasing * Anisotropic filtering * Temporal anti-aliasing * Spatial anti-aliasing In digital signal processing, spatial anti-aliasing is a technique for minimizing the distortion artifacts (aliasing) when representing a high-resolution image at a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Alpha To Coverage
Alpha to coverage is a multisampling computer graphics technique, that replaces alpha blending with a coverage mask. This achieves order-independent transparency for when anti-aliasing or semi-transparent textures are used. This particular technique is useful for situations where dense foliage or grass must be rendered in a video game. Alpha to coverage multisampling is based on regular multisampling, except that the alpha coverage mask is ANDed with the multisample mask. Alpha-to-coverage converts the alpha component output from the pixel shader to a coverage mask. When the multisampling is applied each output fragment gets a transparency of 0 or 1 depending on alpha coverage and the multisampling result. See also * Alpha test (computer graphics) * Spatial anti-aliasing * Multisample anti-aliasing Multisample anti-aliasing (MSAA) is a type of spatial anti-aliasing, a technique used in computer graphics to remove jaggies. Definition The term generally refers to a s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Temporal Anti-aliasing
Temporal anti-aliasing (TAA) is a spatial anti-aliasing technique for computer-generated video that combines information from past frames and the current frame to remove jaggies in the current frame. In TAA, each pixel is sampled once per frame but in each frame the sample is at a different location within the pixel. Pixels sampled in past frames are blended with pixels sampled in the current frame to produce an anti-aliased image.Brian Kari, Epic Game"High Quality Temporal Supersampling" TAA compared to MSAA Prior to the development of TAA, MSAA was the dominant anti-aliasing technique. MSAA samples (renders) each pixel multiple times at different locations within the frame and averages the samples to produce the final pixel value. In contrast, TAA samples each pixel only once per frame, but it samples the pixels at a different locations in different frames. This makes TAA faster than MSAA. In parts of the picture without motion, TAA effectively computes MSAA over multiple frames ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


MLAA
Morphological antialiasing (MLAA) is a technique for minimizing the distortion artifacts known as aliasing when representing a high-resolution image at a lower resolution. Contrary to multisample anti-aliasing (MSAA), which does not work for deferred rendering, MLAA is a post-process filtering which detects borders in the resulting image and then finds specific patterns in these. Anti-aliasing is achieved by blending pixels in these borders, according to the pattern they belong to and their position within the pattern. Enhanced subpixel morphological antialiasing, or SMAA, is an image-based GPU-based implementation of MLAA developed by Universidad de Zaragoza and Crytek. See also * Fast approximate anti-aliasing * Multisample anti-aliasing * Anisotropic filtering * Temporal anti-aliasing * Spatial anti-aliasing In digital signal processing, spatial anti-aliasing is a technique for minimizing the distortion artifacts (aliasing) when representing a high-resolution image at a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


FXAA
Fast approximate anti-aliasing (FXAA) is a screen-space anti-aliasing algorithm created by Timothy Lottes at Nvidia. FXAA 3 is released under a public domain license. A later version, FXAA 3.11, is released under a 3-clause BSD license. Algorithm description # The input data is the rendered image and optionally the luminance data. # Acquire the luminance data. This data could be passed into the FXAA algorithm from the rendering step as an alpha channel embedded into the image to be antialiased, calculated from the rendered image, or approximated by using the green channel as the luminance data. # Find high contrast pixels by using a high pass filter that uses the luminance data. Low contrast pixels that are found are excluded from being further altered by FXAA. The high pass filter that excludes low contrast pixels can be tuned to balance speed and sensitivity. # Use contrast between adjacent pixels to heuristically find edges, and determine whether the edges are in the horizo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Aliasing
In signal processing and related disciplines, aliasing is an effect that causes different signals to become indistinguishable (or ''aliases'' of one another) when sampled. It also often refers to the distortion or artifact that results when a signal reconstructed from samples is different from the original continuous signal. Aliasing can occur in signals sampled in time, for instance digital audio, or the stroboscopic effect, and is referred to as temporal aliasing. It can also occur in spatially sampled signals (e.g. moiré patterns in digital images); this type of aliasing is called spatial aliasing. Aliasing is generally avoided by applying low-pass filters or anti-aliasing filters (AAF) to the input signal before sampling and when converting a signal from a higher to a lower sampling rate. Suitable reconstruction filtering should then be used when restoring the sampled signal to the continuous domain or converting a signal from a lower to a higher sampling rate. For spa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pixel Shader
In computer graphics, a shader is a computer program that calculates the appropriate levels of light, darkness, and color during the rendering of a 3D scene - a process known as ''shading''. Shaders have evolved to perform a variety of specialized functions in computer graphics special effects and video post-processing, as well as general-purpose computing on graphics processing units. Traditional shaders calculate rendering effects on graphics hardware with a high degree of flexibility. Most shaders are coded for (and run on) a graphics processing unit (GPU), though this is not a strict requirement. ''Shading languages'' are used to program the GPU's rendering pipeline, which has mostly superseded the fixed-function pipeline of the past that only allowed for common geometry transforming and pixel-shading functions; with shaders, customized effects can be used. The position and color (hue, saturation, brightness, and contrast) of all pixels, vertices, and/or textures us ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Edge Detection
Edge detection includes a variety of mathematical methods that aim at identifying edges, curves in a digital image at which the image brightness changes sharply or, more formally, has discontinuities. The same problem of finding discontinuities in one-dimensional signals is known as ''step detection'' and the problem of finding signal discontinuities over time is known as ''change detection''. Edge detection is a fundamental tool in image processing, machine vision and computer vision, particularly in the areas of feature detection and feature extraction. Motivations The purpose of detecting sharp changes in image brightness is to capture important events and changes in properties of the world. It can be shown that under rather general assumptions for an image formation model, discontinuities in image brightness are likely to correspond to: * discontinuities in depth, * discontinuities in surface orientation, * changes in material properties and * variations in scene illumi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Z-buffer
A depth buffer, also known as a z-buffer, is a type of data buffer used in computer graphics to represent depth information of objects in 3D space from a particular perspective. Depth buffers are an aid to rendering a scene to ensure that the correct polygons properly occlude other polygons. Z-buffering was first described in 1974 by Wolfgang Straßer in his PhD thesis on fast algorithms for rendering occluded objects. A similar solution to determining overlapping polygons is the painter's algorithm, which is capable of handling non-opaque scene elements, though at the cost of efficiency and incorrect results. In a 3D-rendering pipeline, when an object is projected on the screen, the depth (z-value) of a generated fragment in the projected screen image is compared to the value already stored in the buffer (depth test), and replaces it if the new value is closer. It works in tandem with the rasterizer, which computes the colored values. The fragment output by the rasterizer i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Computer Graphics
Computer graphics deals with generating images with the aid of computers. Today, computer graphics is a core technology in digital photography, film, video games, cell phone and computer displays, and many specialized applications. A great deal of specialized hardware and software has been developed, with the displays of most devices being driven by computer graphics hardware. It is a vast and recently developed area of computer science. The phrase was coined in 1960 by computer graphics researchers Verne Hudson and William Fetter of Boeing. It is often abbreviated as CG, or typically in the context of film as computer generated imagery (CGI). The non-artistic aspects of computer graphics are the subject of computer science research. Some topics in computer graphics include user interface design, sprite graphics, rendering, ray tracing, geometry processing, computer animation, vector graphics, 3D modeling, shaders, GPU design, implicit surfaces, visualization, scientific c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]