Multiplicative Partition
In number theory, a multiplicative partition or unordered factorization of an integer ''n'' is a way of writing ''n'' as a product of integers greater than 1, treating two products as equivalent if they differ only in the ordering of the factors. The number ''n'' is itself considered one of these products. Multiplicative partitions closely parallel the study of multipartite partitions, discussed in , which are additive partitions of finite sequences of positive integers, with the addition made pointwise. Although the study of multiplicative partitions has been ongoing since at least 1923, the name "multiplicative partition" appears to have been introduced by . The Latin name "factorisatio numerorum" had been used previously. MathWorld uses the term unordered factorization. Examples *The number 20 has four multiplicative partitions: 2 × 2 × 5, 2 × 10, 4 × 5, and 20. *3 × 3 × 3 × ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Number Theory
Number theory (or arithmetic or higher arithmetic in older usage) is a branch of pure mathematics devoted primarily to the study of the integers and arithmetic function, integer-valued functions. German mathematician Carl Friedrich Gauss (1777–1855) said, "Mathematics is the queen of the sciences—and number theory is the queen of mathematics."German original: "Die Mathematik ist die Königin der Wissenschaften, und die Arithmetik ist die Königin der Mathematik." Number theorists study prime numbers as well as the properties of mathematical objects made out of integers (for example, rational numbers) or defined as generalizations of the integers (for example, algebraic integers). Integers can be considered either in themselves or as solutions to equations (Diophantine geometry). Questions in number theory are often best understood through the study of Complex analysis, analytical objects (for example, the Riemann zeta function) that encode properties of the integers, primes ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Partition (number Theory)
In number theory and combinatorics, a partition of a positive integer , also called an integer partition, is a way of writing as a sum of positive integers. Two sums that differ only in the order of their summands are considered the same partition. (If order matters, the sum becomes a composition.) For example, can be partitioned in five distinct ways: : : : : : The order-dependent composition is the same partition as , and the two distinct compositions and represent the same partition as . A summand in a partition is also called a part. The number of partitions of is given by the partition function . So . The notation means that is a partition of . Partitions can be graphically visualized with Young diagrams or Ferrers diagrams. They occur in a number of branches of mathematics and physics, including the study of symmetric polynomials and of the symmetric group and in group representation theory in general. Examples The seven partitions of 5 are: * 5 * 4 + 1 * 3 + ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Pointwise
In mathematics, the qualifier pointwise is used to indicate that a certain property is defined by considering each value f(x) of some function f. An important class of pointwise concepts are the ''pointwise operations'', that is, operations defined on functions by applying the operations to function values separately for each point in the domain of definition. Important relations can also be defined pointwise. Pointwise operations Formal definition A binary operation on a set can be lifted pointwise to an operation on the set of all functions from to as follows: Given two functions and , define the function by Commonly, ''o'' and ''O'' are denoted by the same symbol. A similar definition is used for unary operations ''o'', and for operations of other arity. Examples \begin (f+g)(x) & = f(x)+g(x) & \text \\ (f\cdot g)(x) & = f(x) \cdot g(x) & \text \\ (\lambda \cdot f)(x) & = \lambda \cdot f(x) & \text \end where f, g : X \to R. See also pointwise product, and scalar. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
MathWorld
''MathWorld'' is an online mathematics reference work, created and largely written by Eric W. Weisstein. It is sponsored by and licensed to Wolfram Research, Inc. and was partially funded by the National Science Foundation's National Science Digital Library grant to the University of Illinois at Urbana–Champaign. History Eric W. Weisstein, the creator of the site, was a physics and astronomy student who got into the habit of writing notes on his mathematical readings. In 1995 he put his notes online and called it "Eric's Treasure Trove of Mathematics." It contained hundreds of pages/articles, covering a wide range of mathematical topics. The site became popular as an extensive single resource on mathematics on the web. Weisstein continuously improved the notes and accepted corrections and comments from online readers. In 1998, he made a contract with CRC Press and the contents of the site were published in print and CD-ROM form, titled "CRC Concise Encyclopedia of Mathematic ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Prime Number
A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways of writing it as a product, or , involve 5 itself. However, 4 is composite because it is a product (2 × 2) in which both numbers are smaller than 4. Primes are central in number theory because of the fundamental theorem of arithmetic: every natural number greater than 1 is either a prime itself or can be factorized as a product of primes that is unique up to their order. The property of being prime is called primality. A simple but slow method of checking the primality of a given number n, called trial division, tests whether n is a multiple of any integer between 2 and \sqrt. Faster algorithms include the Miller–Rabin primality test, which is fast but has a small chance of error, and the AKS primality test, which always pr ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Partition (number Theory)
In number theory and combinatorics, a partition of a positive integer , also called an integer partition, is a way of writing as a sum of positive integers. Two sums that differ only in the order of their summands are considered the same partition. (If order matters, the sum becomes a composition.) For example, can be partitioned in five distinct ways: : : : : : The order-dependent composition is the same partition as , and the two distinct compositions and represent the same partition as . A summand in a partition is also called a part. The number of partitions of is given by the partition function . So . The notation means that is a partition of . Partitions can be graphically visualized with Young diagrams or Ferrers diagrams. They occur in a number of branches of mathematics and physics, including the study of symmetric polynomials and of the symmetric group and in group representation theory in general. Examples The seven partitions of 5 are: * 5 * 4 + 1 * 3 + ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Square-free Integer
In mathematics, a square-free integer (or squarefree integer) is an integer which is divisible by no square number other than 1. That is, its prime factorization has exactly one factor for each prime that appears in it. For example, is square-free, but is not, because 18 is divisible by . The smallest positive square-free numbers are Square-free factorization Every positive integer n can be factored in a unique way as n=\prod_^k q_i^i, where the q_i different from one are square-free integers that are pairwise coprime. This is called the ''square-free factorization'' of . To construct the square-free factorization, let n=\prod_^h p_j^ be the prime factorization of n, where the p_j are distinct prime numbers. Then the factors of the square-free factorization are defined as q_i=\prod_p_j. An integer is square-free if and only if q_i=1 for all i > 1. An integer greater than one is the kth power of another integer if and only if k is a divisor of all i such that q_i\neq 1. T ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Bell Number
In combinatorial mathematics, the Bell numbers count the possible partitions of a set. These numbers have been studied by mathematicians since the 19th century, and their roots go back to medieval Japan. In an example of Stigler's law of eponymy, they are named after Eric Temple Bell, who wrote about them in the 1930s. The Bell numbers are denoted B_n, where n is an integer greater than or equal to zero. Starting with B_0 = B_1 = 1, the first few Bell numbers are :1, 1, 2, 5, 15, 52, 203, 877, 4140, ... . The Bell number B_n counts the number of different ways to partition a set that has exactly n elements, or equivalently, the number of equivalence relations on it. B_n also counts the number of different rhyme schemes for n -line poems. As well as appearing in counting problems, these numbers have a different interpretation, as moments of probability distributions. In particular, B_n is the n -th moment of a Poisson distribution with mean 1. Counting Set partitions In ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Multiplicative Function
In number theory, a multiplicative function is an arithmetic function ''f''(''n'') of a positive integer ''n'' with the property that ''f''(1) = 1 and f(ab) = f(a)f(b) whenever ''a'' and ''b'' are coprime. An arithmetic function ''f''(''n'') is said to be completely multiplicative (or totally multiplicative) if ''f''(1) = 1 and ''f''(''ab'') = ''f''(''a'')''f''(''b'') holds ''for all'' positive integers ''a'' and ''b'', even when they are not coprime. Examples Some multiplicative functions are defined to make formulas easier to write: * 1(''n''): the constant function, defined by 1(''n'') = 1 (completely multiplicative) * Id(''n''): identity function, defined by Id(''n'') = ''n'' (completely multiplicative) * Id''k''(''n''): the power functions, defined by Id''k''(''n'') = ''n''''k'' for any complex number ''k'' (completely multiplicative). As special cases we have ** Id0(''n'') = 1(''n'') and ** Id1(''n'') = Id(''n''). * ''ε''(''n''): the function defined by ''ε''(''n'') ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Divisor Function
In mathematics, and specifically in number theory, a divisor function is an arithmetic function related to the divisors of an integer. When referred to as ''the'' divisor function, it counts the ''number of divisors of an integer'' (including 1 and the number itself). It appears in a number of remarkable identities, including relationships on the Riemann zeta function and the Eisenstein series of modular forms. Divisor functions were studied by Ramanujan, who gave a number of important Modular arithmetic, congruences and identity (mathematics), identities; these are treated separately in the article Ramanujan's sum. A related function is the divisor summatory function, which, as the name implies, is a sum over the divisor function. Definition The sum of positive divisors function σ''z''(''n''), for a real or complex number ''z'', is defined as the summation, sum of the ''z''th Exponentiation, powers of the positive divisors of ''n''. It can be expressed in Summation#Capital ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Dirichlet Series
In mathematics, a Dirichlet series is any series of the form \sum_^\infty \frac, where ''s'' is complex, and a_n is a complex sequence. It is a special case of general Dirichlet series. Dirichlet series play a variety of important roles in analytic number theory. The most usually seen definition of the Riemann zeta function is a Dirichlet series, as are the Dirichlet L-functions. It is conjectured that the Selberg class of series obeys the generalized Riemann hypothesis. The series is named in honor of Peter Gustav Lejeune Dirichlet. Combinatorial importance Dirichlet series can be used as generating series for counting weighted sets of objects with respect to a weight which is combined multiplicatively when taking Cartesian products. Suppose that ''A'' is a set with a function ''w'': ''A'' → N assigning a weight to each of the elements of ''A'', and suppose additionally that the Fiber (mathematics), fibre over any natural number under that weight is a finite set. (We call such ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Divisor
In mathematics, a divisor of an integer n, also called a factor of n, is an integer m that may be multiplied by some integer to produce n. In this case, one also says that n is a multiple of m. An integer n is divisible or evenly divisible by another integer m if m is a divisor of n; this implies dividing n by m leaves no remainder. Definition An integer is divisible by a nonzero integer if there exists an integer such that n=km. This is written as :m\mid n. Other ways of saying the same thing are that divides , is a divisor of , is a factor of , and is a multiple of . If does not divide , then the notation is m\not\mid n. Usually, is required to be nonzero, but is allowed to be zero. With this convention, m \mid 0 for every nonzero integer . Some definitions omit the requirement that m be nonzero. General Divisors can be negative as well as positive, although sometimes the term is restricted to positive divisors. For example, there are six divisors of 4; they ar ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |