Multi-channel Memory Architecture
In the fields of digital electronics and computer hardware, multi-channel memory architecture is a technology that increases the data transfer rate between the DRAM memory and the memory controller by adding more channels of communication between them. Theoretically, this multiplies the data rate by exactly the number of channels present. Dual-channel memory employs two channels. The technique goes back as far as the 1960s having been used in IBM System/360 Model 91 and in CDC 6600. Modern high-end desktop and workstation processors such as the AMD Ryzen Threadripper series and the Intel Core i9 Extreme Edition lineup support quad-channel memory. Server processors from the AMD Epyc series and the Intel Xeon platforms give support to memory bandwidth starting from quad-channel module layout to up to octa-channel layout. In March 2010, AMD released Socket G34 and Magny-Cours Opteron 6100 series processors with support for quad-channel memory. In 2006, Intel released chipsets that s ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Digital Electronics
Digital electronics is a field of electronics involving the study of digital signals and the engineering of devices that use or produce them. This is in contrast to analog electronics and analog signals. Digital electronic circuits are usually made from large assemblies of logic gates, often packaged in integrated circuits. Complex devices may have simple electronic representations of Boolean logic functions. History The binary number system was refined by Gottfried Wilhelm Leibniz (published in 1705) and he also established that by using the binary system, the principles of arithmetic and logic could be joined. Digital logic as we know it was the brain-child of George Boole in the mid 19th century. In an 1886 letter, Charles Sanders Peirce described how logical operations could be carried out by electrical switching circuits.Peirce, C. S., "Letter, Peirce to A. Marquand", dated 1886, '' Writings of Charles S. Peirce'', v. 5, 1993, pp. 541–3. GooglPreview See Burks, Ar ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Backplane
A backplane (or "backplane system") is a group of electrical connectors in parallel with each other, so that each pin of each connector is linked to the same relative pin of all the other connectors, forming a computer bus. It is used as a backbone to connect several printed circuit boards together to make up a complete computer system. Backplanes commonly use a printed circuit board, but wire-wrapped backplanes have also been used in minicomputers and high-reliability applications. A backplane is generally differentiated from a motherboard by the lack of on-board processing and storage elements. A backplane uses plug-in cards for storage and processing. Usage Early microcomputer systems like the Altair 8800 used a backplane for the processor and expansion cards. Backplanes are normally used in preference to cables because of their greater reliability. In a cabled system, the cables need to be flexed every time that a card is added or removed from the system; this flexing eve ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
JBOD
The most widespread standard for configuring multiple hard disk drives is RAID (Redundant Array of Inexpensive/Independent Disks), which comes in a number of standard configurations and non-standard configurations. Non-RAID drive architectures also exist, and are referred to by acronyms with tongue-in-cheek similarity to RAID: * JBOD (derived from "just a bunch of disks"): described multiple hard disk drives operated as individual independent hard disk drives. * SPAN or BIG: A method of combining the free space on multiple hard disk drives from "JBoD" to create a spanned volume. Such a concatenation is sometimes also called BIG/SPAN. A SPAN or BIG is generally a spanned volume only, as it often contains mismatched types and sizes of hard disk drives. * MAID (derived from "massive array of idle drives"): an architecture using hundreds to thousands of hard disk drives for providing nearline storage of data, primarily designed for "Write Once, Read Occasionally" (WORO) applications, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
RAID 0
In computer storage, the standard RAID levels comprise a basic set of RAID ("redundant array of independent disks" or "redundant array of inexpensive disks") configurations that employ the techniques of striping, mirroring, or parity to create large reliable data stores from multiple general-purpose computer hard disk drives (HDDs). The most common types are RAID 0 (striping), RAID 1 (mirroring) and its variants, RAID 5 (distributed parity), and RAID 6 (dual parity). Multiple RAID levels can also be combined or ''nested'', for instance RAID 10 (striping of mirrors) or RAID 01 (mirroring stripe sets). RAID levels and their associated data formats are standardized by the Storage Networking Industry Association (SNIA) in the Common RAID Disk Drive Format (DDF) standard. The numerical values only serve as identifiers and do not signify performance, reliability, generation, or any other metric. While most RAID levels can provide good protection against an ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Multi-core Processor
A multi-core processor is a microprocessor on a single integrated circuit with two or more separate processing units, called cores, each of which reads and executes program instructions. The instructions are ordinary CPU instructions (such as add, move data, and branch) but the single processor can run instructions on separate cores at the same time, increasing overall speed for programs that support multithreading or other parallel computing techniques. Manufacturers typically integrate the cores onto a single integrated circuit die (known as a chip multiprocessor or CMP) or onto multiple dies in a single chip package. The microprocessors currently used in almost all personal computers are multi-core. A multi-core processor implements multiprocessing in a single physical package. Designers may couple cores in a multi-core device tightly or loosely. For example, cores may or may not share caches, and they may implement message passing or shared-memory inter-core comm ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Multithreading (computer Architecture)
In computer architecture, multithreading is the ability of a central processing unit (CPU) (or a single core in a multi-core processor) to provide multiple threads of execution concurrently, supported by the operating system. This approach differs from multiprocessing. In a multithreaded application, the threads share the resources of a single or multiple cores, which include the computing units, the CPU caches, and the translation lookaside buffer (TLB). Where multiprocessing systems include multiple complete processing units in one or more cores, multithreading aims to increase utilization of a single core by using thread-level parallelism, as well as instruction-level parallelism. As the two techniques are complementary, they are combined in nearly all modern systems architectures with multiple multithreading CPUs and with CPUs with multiple multithreading cores. Overview The multithreading paradigm has become more popular as efforts to further exploit instruction-leve ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Kilobyte
The kilobyte is a multiple of the unit byte for digital information. The International System of Units (SI) defines the prefix '' kilo'' as 1000 (103); per this definition, one kilobyte is 1000 bytes.International Standard IEC 80000-13 Quantities and Units – Part 13: Information science and technology, International Electrotechnical Commission (2008). The internationally recommended unit symbol for the kilobyte is kB. In some areas of information technology, particularly in reference to solid-state memory capacity, ''kilobyte'' instead typically refers to 1024 (210) bytes. This arises from the prevalence of sizes that are powers of two in modern digital memory architectures, coupled with the accident that 210 differs from 103 by less than 2.5%. A kibibyte is defined by Clause 4 of IEC 80000-13 as 1024 bytes. Definitions and usage Base 10 (1000 bytes) In the International System of Units (SI) the prefix '' kilo'' means 1000 (103); therefore, one kilobyte is 1000 bytes. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
DDR5 SDRAM
Double Data Rate 5 Synchronous Dynamic Random-Access Memory (DDR5 SDRAM) is a type of synchronous dynamic random-access memory. Compared to its predecessor DDR4 SDRAM, DDR5 was planned to reduce power consumption, while doubling bandwidth. The standard, originally targeted for 2018, was released on July 14, 2020. A new feature called Decision Feedback Equalization (DFE) enables I/O speed scalability for higher bandwidth and performance improvement. DDR5 supports more bandwidth than its predecessor, DDR4, with 4.8 gigabits per second possible, but not shipping at launch. DDR5 has about the same latency as DDR4 and DDR3. DDR5 octuples the maximum DIMM capacity from 64 GB to 512 GB. DDR5 also has higher frequencies than DDR4. Rambus announced a working DDR5 DIMM in September 2017. On November 15, 2018, SK Hynix announced completion of its first DDR5 RAM chip; it runs at 5200 MT/s at 1.1 V. In February 2019, SK Hynix announced a 6400 MT/s chip, the highest speed specified ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
DDR4 SDRAM
Double Data Rate 4 Synchronous Dynamic Random-Access Memory (DDR4 SDRAM) is a type of synchronous dynamic random-access memory with a high bandwidth (" double data rate") interface. Released to the market in 2014, it is a variant of dynamic random-access memory (DRAM), of which some have been in use since the early 1970s, and a higher-speed successor to the DDR2 and DDR3 technologies. DDR4 is not compatible with any earlier type of random-access memory (RAM) due to different signaling voltage and physical interface, besides other factors. DDR4 SDRAM was released to the public market in Q2 2014, focusing on ECC memory, while the non-ECC DDR4 modules became available in Q3 2014, accompanying the launch of Haswell-E processors that require DDR4 memory. Features The primary advantages of DDR4 over its predecessor, DDR3, include higher module density and lower voltage requirements, coupled with higher data rate transfer speeds. The DDR4 standard allows for DIMMs o ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
DDR3 SDRAM
Double Data Rate 3 Synchronous Dynamic Random-Access Memory (DDR3 SDRAM) is a type of synchronous dynamic random-access memory (SDRAM) with a high bandwidth ("double data rate") interface, and has been in use since 2007. It is the higher-speed successor to DDR and DDR2 and predecessor to DDR4 synchronous dynamic random-access memory (SDRAM) chips. DDR3 SDRAM is neither forward nor backward compatible with any earlier type of random-access memory (RAM) because of different signaling voltages, timings, and other factors. DDR3 is a DRAM interface specification. The actual DRAM arrays that store the data are similar to earlier types, with similar performance. The primary benefit of DDR3 SDRAM over its immediate predecessor DDR2 SDRAM, is its ability to transfer data at twice the rate (eight times the speed of its internal memory arrays), enabling higher bandwidth or peak data rates. The DDR3 standard permits DRAM chip capacities of up to 8 gigabits (Gbit), and up to four ran ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
DDR2 SDRAM
Double Data Rate 2 Synchronous Dynamic Random-Access Memory (DDR2 SDRAM) is a double data rate (DDR) synchronous dynamic random-access memory (SDRAM) interface. It superseded the original DDR SDRAM specification, and was itself superseded by DDR3 SDRAM (launched in 2007). DDR2 DIMMs are neither forward compatible with DDR3 nor backward compatible with DDR. In addition to double pumping the data bus as in DDR SDRAM (transferring data on the rising and falling edges of the bus clock signal), DDR2 allows higher bus speed and requires lower power by running the internal clock at half the speed of the data bus. The two factors combine to produce a total of four data transfers per internal clock cycle. Since the DDR2 internal clock runs at half the DDR external clock rate, DDR2 memory operating at the same external data bus clock rate as DDR results in DDR2 being able to provide the same bandwidth but with better latency. Alternatively, DDR2 memory operating at twice the external d ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |