HOME



picture info

Modulo
In computing and mathematics, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, the latter being called the '' modulus'' of the operation. Given two positive numbers and , modulo (often abbreviated as ) is the remainder of the Euclidean division of by , where is the dividend and is the divisor. For example, the expression "5 mod 2" evaluates to 1, because 5 divided by 2 has a quotient of 2 and a remainder of 1, while "9 mod 3" would evaluate to 0, because 9 divided by 3 has a quotient of 3 and a remainder of 0. Although typically performed with and both being integers, many computing systems now allow other types of numeric operands. The range of values for an integer modulo operation of is 0 to . mod 1 is always 0. When exactly one of or is negative, the basic definition breaks down, and programming languages differ in how these values are defined. Variants of the definition In mathematics, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Divmod Truncated
In computing and mathematics, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, the latter being called the '' modulus'' of the operation. Given two positive numbers and , modulo (often abbreviated as ) is the remainder of the Euclidean division of by , where is the dividend and is the divisor. For example, the expression "5 mod 2" evaluates to 1, because 5 divided by 2 has a quotient of 2 and a remainder of 1, while "9 mod 3" would evaluate to 0, because 9 divided by 3 has a quotient of 3 and a remainder of 0. Although typically performed with and both being integers, many computing systems now allow other types of numeric operands. The range of values for an integer modulo operation of is 0 to . mod 1 is always 0. When exactly one of or is negative, the basic definition breaks down, and programming languages differ in how these values are defined. Variants of the definition In mathematics, the re ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Modular Arithmetic
In mathematics, modular arithmetic is a system of arithmetic operations for integers, other than the usual ones from elementary arithmetic, where numbers "wrap around" when reaching a certain value, called the modulus. The modern approach to modular arithmetic was developed by Carl Friedrich Gauss in his book '' Disquisitiones Arithmeticae'', published in 1801. A familiar example of modular arithmetic is the hour hand on a 12-hour clock. If the hour hand points to 7 now, then 8 hours later it will point to 3. Ordinary addition would result in , but 15 reads as 3 on the clock face. This is because the hour hand makes one rotation every 12 hours and the hour number starts over when the hour hand passes 12. We say that 15 is ''congruent'' to 3 modulo 12, written 15 ≡ 3 (mod 12), so that 7 + 8 ≡ 3 (mod 12). Similarly, if one starts at 12 and waits 8 hours, the hour hand will be at 8. If one instead waited twice as long, 16 hours, the hour hand would be on 4. This ca ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]




Operator (programming)
In computer programming, an operator is a programming language construct that provides functionality that may not be possible to define as a user-defined function (i.e. sizeof in C) or has syntax different than a function (i.e. infix addition as in a+b). Like other programming language concepts, ''operator'' has a generally accepted, although debatable meaning among practitioners while at the same time each language gives it specific meaning in that context, and therefore the meaning varies by language. Some operators are represented with symbols characters typically not allowed for a function identifier to allow for presentation that is more familiar looking than typical function syntax. For example, a function that tests for greater-than could be named gt, but many languages provide an infix symbolic operator so that code looks more familiar. For example, this: if gt(x, y) then return Can be: if x > y then return Some languages allow a language-defined operator to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Remainder
In mathematics, the remainder is the amount "left over" after performing some computation. In arithmetic, the remainder is the integer "left over" after dividing one integer by another to produce an integer quotient ( integer division). In algebra of polynomials, the remainder is the polynomial "left over" after dividing one polynomial by another. The ''modulo operation'' is the operation that produces such a remainder when given a dividend and divisor. Alternatively, a remainder is also what is left after subtracting one number from another, although this is more precisely called the '' difference''. This usage can be found in some elementary textbooks; colloquially it is replaced by the expression "the rest" as in "Give me two dollars back and keep the rest." However, the term "remainder" is still used in this sense when a function is approximated by a series expansion, where the error expression ("the rest") is referred to as the remainder term. Integer division Gi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Euclidean Division
In arithmetic, Euclidean division – or division with remainder – is the process of dividing one integer (the dividend) by another (the divisor), in a way that produces an integer quotient and a natural number remainder strictly smaller than the absolute value of the divisor. A fundamental property is that the quotient and the remainder exist and are unique, under some conditions. Because of this uniqueness, ''Euclidean division'' is often considered without referring to any method of computation, and without explicitly computing the quotient and the remainder. The methods of computation are called integer division algorithms, the best known of which being long division. Euclidean division, and algorithms to compute it, are fundamental for many questions concerning integers, such as the Euclidean algorithm for finding the greatest common divisor of two integers, and modular arithmetic, for which only remainders are considered. The operation consisting of computing only ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Equivalence Class
In mathematics, when the elements of some set S have a notion of equivalence (formalized as an equivalence relation), then one may naturally split the set S into equivalence classes. These equivalence classes are constructed so that elements a and b belong to the same equivalence class if, and only if, they are equivalent. Formally, given a set S and an equivalence relation \sim on S, the of an element a in S is denoted /math> or, equivalently, to emphasize its equivalence relation \sim, and is defined as the set of all elements in S with which a is \sim-related. The definition of equivalence relations implies that the equivalence classes form a partition of S, meaning, that every element of the set belongs to exactly one equivalence class. The set of the equivalence classes is sometimes called the quotient set or the quotient space of S by \sim, and is denoted by S /. When the set S has some structure (such as a group operation or a topology) and the equivalence re ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Representative (mathematics)
In mathematics, when the elements of some set S have a notion of equivalence (formalized as an equivalence relation), then one may naturally split the set S into equivalence classes. These equivalence classes are constructed so that elements a and b belong to the same equivalence class if, and only if, they are equivalent. Formally, given a set S and an equivalence relation \sim on S, the of an element a in S is denoted /math> or, equivalently, to emphasize its equivalence relation \sim, and is defined as the set of all elements in S with which a is \sim-related. The definition of equivalence relations implies that the equivalence classes form a partition of S, meaning, that every element of the set belongs to exactly one equivalence class. The set of the equivalence classes is sometimes called the quotient set or the quotient space of S by \sim, and is denoted by S /. When the set S has some structure (such as a group operation or a topology) and the equivalence rel ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Ceiling Function
In mathematics, the floor function is the function that takes as input a real number , and gives as output the greatest integer less than or equal to , denoted or . Similarly, the ceiling function maps to the least integer greater than or equal to , denoted or . For example, for floor: , , and for ceiling: , and . The floor of is also called the integral part, integer part, greatest integer, or entier of , and was historically denoted (among other notations). However, the same term, ''integer part'', is also used for truncation towards zero, which differs from the floor function for negative numbers. For an integer , . Although and produce graphs that appear exactly alike, they are not the same when the value of is an exact integer. For example, when , . However, if , then , while . Notation The ''integral part'' or ''integer part'' of a number ( in the original) was first defined in 1798 by Adrien-Marie Legendre in his proof of the Legendre's formula. Ca ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]