HOME
*





Mittag-Leffler Star
In complex analysis, a branch of mathematics, the Mittag-Leffler star of a holomorphic function, complex-analytic function is a set in the complex plane obtained by attempting to extend that function along ray (mathematics), rays emanating from a given point. This concept is named after Gösta Mittag-Leffler. Definition and elementary properties Formally, the Mittag-Leffler star of a complex-analytic function ''ƒ'' defined on an open disk ''U'' in the complex plane centered at a point ''a'' is the set of all points ''z'' in the complex plane such that ''ƒ'' can be continued analytically along the line segment joining ''a'' and ''z'' (see analytic continuation along a curve). It follows from the definition that the Mittag-Leffler star is an open star-convex set (with respect to the point ''a'') and that it contains the disk ''U''. Moreover, ''ƒ'' admits a single-valued analytic continuation to the Mittag-Leffler star. Examples * The Mittag-Leffler star of the comp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Star-convex Set
In geometry, a set S in the Euclidean space \R^n is called a star domain (or star-convex set, star-shaped set or radially convex set) if there exists an s_0 \in S such that for all s \in S, the line segment from s_0 to s lies in S. This definition is immediately generalizable to any real, or complex, vector space. Intuitively, if one thinks of S as a region surrounded by a wall, S is a star domain if one can find a vantage point s_0 in S from which any point s in S is within line-of-sight. A similar, but distinct, concept is that of a radial set. Definition Given two points x and y in a vector space X (such as Euclidean space \R^n), the convex hull of \ is called the and it is denoted by \left , y\right~:=~ \left\ ~=~ x + (y - x) , 1 where z , 1:= \ for every vector z. A subset S of a vector space X is said to be s_0 \in S if for every s \in S, the closed interval \left _0, s\right\subseteq S. A set S is and is called a if there exists some point s_0 \in S such that S i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Polynomial
In mathematics, a polynomial is an expression consisting of indeterminates (also called variables) and coefficients, that involves only the operations of addition, subtraction, multiplication, and positive-integer powers of variables. An example of a polynomial of a single indeterminate is . An example with three indeterminates is . Polynomials appear in many areas of mathematics and science. For example, they are used to form polynomial equations, which encode a wide range of problems, from elementary word problems to complicated scientific problems; they are used to define polynomial functions, which appear in settings ranging from basic chemistry and physics to economics and social science; they are used in calculus and numerical analysis to approximate other functions. In advanced mathematics, polynomials are used to construct polynomial rings and algebraic varieties, which are central concepts in algebra and algebraic geometry. Etymology The word ''polynomial'' join ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Series (mathematics)
In mathematics, a series is, roughly speaking, a description of the operation of adding infinitely many quantities, one after the other, to a given starting quantity. The study of series is a major part of calculus and its generalization, mathematical analysis. Series are used in most areas of mathematics, even for studying finite structures (such as in combinatorics) through generating functions. In addition to their ubiquity in mathematics, infinite series are also widely used in other quantitative disciplines such as physics, computer science, statistics and finance. For a long time, the idea that such a potentially infinite summation could produce a finite result was considered paradoxical. This paradox was resolved using the concept of a limit during the 17th century. Zeno's paradox of Achilles and the tortoise illustrates this counterintuitive property of infinite sums: Achilles runs after a tortoise, but when he reaches the position of the tortoise at the beginning of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


ML Expansion Illustration
ML or ml may refer to: Computing and mathematics * ML (programming language), a general-purpose functional programming language * .ml, the top-level Internet domain for Mali * Machine language, the direct instructions to a computer's central processing unit (CPU) * Machine learning, a field of computer science * Markup language, a system for annotating a document * Maximum likelihood, a method of estimating the parameters of a statistical model * Mathematical Logic, a variation of Quine's system New Foundations Measurement * Megalitre or megaliter (ML, Ml, or Mℓ), a unit of capacity * Millilitre or milliliter (mL, ml, or mℓ), a unit of capacity * Millilambert (mL), a non-SI unit of luminance * Richter magnitude scale (''M''L), used to measure earthquakes * Megalangmuir (ML), a unit of exposure of a surface to a given chemical species (convention is 1 ML=monolayer=1 Langmuir) Other * 1050, in Roman numerals * ''ML'' (film), a 2018 Philippine film * ML 8-inch shell gun * ML ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Domain Of Holomorphy
In mathematics, in the theory of functions of Function of several complex variables, several complex variables, a domain of holomorphy is a domain which is maximal in the sense that there exists a holomorphic function on this domain which cannot be analytic continuation, extended to a bigger domain. Formally, an open set \Omega in the ''n''-dimensional complex space ^n is called a ''domain of holomorphy'' if there do not exist non-empty open sets U \subset \Omega and V \subset ^n where V is connected space, connected, V \not\subset \Omega and U \subset \Omega \cap V such that for every holomorphic function f on \Omega there exists a holomorphic function g on V with f = g on U In the n=1 case, every open set is a domain of holomorphy: we can define a holomorphic function with zeros accumulation point, accumulating everywhere on the boundary (topology), boundary of the domain, which must then be a analytic continuation#Natural boundary, natural boundary for a domain of definit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Complex Logarithm
In mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ..., a complex logarithm is a generalization of the natural logarithm to nonzero complex numbers. The term refers to one of the following, which are strongly related: * A complex logarithm of a nonzero complex number z, defined to be any complex number w for which e^w = z.Ahlfors, Section 3.4.Sarason, Section IV.9. Such a number w is denoted by \log z. If z is given in polar form as z = re^, where r and \theta are real numbers with r>0, then \ln r + i \theta is one logarithm of z, and all the complex logarithms of z are exactly the numbers of the form \ln r + i\left(\theta + 2\pi k\right) for integers ''k''. These logarithms are equally spaced along a vertical line in the complex plane. * A complex-valued function \ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Exponential Function
The exponential function is a mathematical function denoted by f(x)=\exp(x) or e^x (where the argument is written as an exponent). Unless otherwise specified, the term generally refers to the positive-valued function of a real variable, although it can be extended to the complex numbers or generalized to other mathematical objects like matrices or Lie algebras. The exponential function originated from the notion of exponentiation (repeated multiplication), but modern definitions (there are several equivalent characterizations) allow it to be rigorously extended to all real arguments, including irrational numbers. Its ubiquitous occurrence in pure and applied mathematics led mathematician Walter Rudin to opine that the exponential function is "the most important function in mathematics". The exponential function satisfies the exponentiation identity e^ = e^x e^y \text x,y\in\mathbb, which, along with the definition e = \exp(1), shows that e^n=\underbrace_ for positive i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Analytic Continuation
In complex analysis, a branch of mathematics, analytic continuation is a technique to extend the domain of definition of a given analytic function. Analytic continuation often succeeds in defining further values of a function, for example in a new region where an infinite series representation in terms of which it is initially defined becomes divergent. The step-wise continuation technique may, however, come up against difficulties. These may have an essentially topological nature, leading to inconsistencies (defining more than one value). They may alternatively have to do with the presence of singularities. The case of several complex variables is rather different, since singularities then need not be isolated points, and its investigation was a major reason for the development of sheaf cohomology. Initial discussion Suppose ''f'' is an analytic function defined on a non-empty open subset ''U'' of the complex plane If ''V'' is a larger open subset of containing ''U'', and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Analytic Continuation Along A Curve
In complex analysis, the monodromy theorem is an important result about analytic continuation of a complex-analytic function to a larger set. The idea is that one can extend a complex-analytic function (from here on called simply ''analytic function'') along curves starting in the original domain of the function and ending in the larger set. A potential problem of this analytic continuation along a curve strategy is there are usually many curves which end up at the same point in the larger set. The monodromy theorem gives sufficient conditions for analytic continuation to give the same value at a given point regardless of the curve used to get there, so that the resulting extended analytic function is well-defined and single-valued. Before stating this theorem it is necessary to define analytic continuation along a curve and study its properties. Analytic continuation along a curve The definition of analytic continuation along a curve is a bit technical, but the basic idea i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Complex Analysis
Complex analysis, traditionally known as the theory of functions of a complex variable, is the branch of mathematical analysis that investigates Function (mathematics), functions of complex numbers. It is helpful in many branches of mathematics, including algebraic geometry, number theory, analytic combinatorics, applied mathematics; as well as in physics, including the branches of hydrodynamics, thermodynamics, and particularly quantum mechanics. By extension, use of complex analysis also has applications in engineering fields such as nuclear engineering, nuclear, aerospace engineering, aerospace, mechanical engineering, mechanical and electrical engineering. As a differentiable function of a complex variable is equal to its Taylor series (that is, it is Analyticity of holomorphic functions, analytic), complex analysis is particularly concerned with analytic functions of a complex variable (that is, holomorphic functions). History Complex analysis is one of the classical ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Line Segment
In geometry, a line segment is a part of a straight line that is bounded by two distinct end points, and contains every point on the line that is between its endpoints. The length of a line segment is given by the Euclidean distance between its endpoints. A closed line segment includes both endpoints, while an open line segment excludes both endpoints; a half-open line segment includes exactly one of the endpoints. In geometry, a line segment is often denoted using a line above the symbols for the two endpoints (such as \overline). Examples of line segments include the sides of a triangle or square. More generally, when both of the segment's end points are vertices of a polygon or polyhedron, the line segment is either an edge (geometry), edge (of that polygon or polyhedron) if they are adjacent vertices, or a diagonal. When the end points both lie on a curve (such as a circle), a line segment is called a chord (geometry), chord (of that curve). In real or complex vector spa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]