Milnor Conjecture (Ricci)
   HOME
*





Milnor Conjecture (Ricci)
In 1968 John Milnor conjectured that the fundamental group of a complete manifold is finitely generated if its Ricci curvature stays nonnegative. In an oversimplified interpretation, such a manifold has a finite number of " holes". A version for almost-flat manifolds holds from work of Gromov. In two dimensions M^2 has finitely generated fundamental group as a consequence that if \operatorname>0 for noncompact M^2, then it is flat or diffeomorphic to \mathbb^2, by work of Cohn-Vossen from 1935. In three dimensions the conjecture holds due to a noncompact M^3 with \operatorname>0 being diffeomorphic to \mathbb^3 or having its universal cover isometrically split. The diffeomorphic part is due to Schoen Schoen is a common surname of German origin. People with the surname include: *Alan Schoen (1924–2023), US physicist * Christian Schoen (b. 1970), German art historian * Craig Schoen (b. 1983), US athlete in basketball * Cristie Schoen (1976-2015 ...- Yau (1982) while the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


John Milnor
John Willard Milnor (born February 20, 1931) is an American mathematician known for his work in differential topology, algebraic K-theory and low-dimensional holomorphic dynamical systems. Milnor is a distinguished professor at Stony Brook University and one of the five mathematicians to have won the Fields Medal, the Wolf Prize, and the Abel Prize (the others being Serre, Thompson, Deligne, and Margulis.) Early life and career Milnor was born on February 20, 1931, in Orange, New Jersey. His father was J. Willard Milnor and his mother was Emily Cox Milnor. As an undergraduate at Princeton University he was named a Putnam Fellow in 1949 and 1950 and also proved the Fáry–Milnor theorem when he was only 19 years old. Milnor graduated with an A.B. in mathematics in 1951 after completing a senior thesis, titled "Link groups", under the supervision of Robert H. Fox. He remained at Princeton to pursue graduate studies and received his Ph.D. in mathematics in 1954 after completi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Stefan Cohn-Vossen
Stefan Cohn-Vossen (28 May 1902 – 25 June 1936) was a mathematician, who was responsible for Cohn-Vossen's inequality and the Cohn-Vossen transformation is also named for him. He proved the first version of the splitting theorem. He was also known for his collaboration with David Hilbert on the 1932 book ''Anschauliche Geometrie'', translated into English as ''Geometry and the Imagination ''Geometry and the Imagination'' is the English translation of the 1932 book by David Hilbert and Stefan Cohn-Vossen. The book was based on a series of lectures Hilbert made in the winter of 1920–21. The book is an attempt to present some t ...''. He was born in Breslau (then a city in the Kingdom of Prussia; now Wrocław in Poland). He wrote a 1924 doctoral dissertation at the University of Breslau (now the University of Wrocław) under the supervision of Adolf Kneser. He became a professor at the University of Cologne in 1930. He was barred from lecturing in 1933 unde ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Differential Geometry
Differential geometry is a mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of differential calculus, integral calculus, linear algebra and multilinear algebra. The field has its origins in the study of spherical geometry as far back as antiquity. It also relates to astronomy, the geodesy of the Earth, and later the study of hyperbolic geometry by Lobachevsky. The simplest examples of smooth spaces are the plane and space curves and surfaces in the three-dimensional Euclidean space, and the study of these shapes formed the basis for development of modern differential geometry during the 18th and 19th centuries. Since the late 19th century, differential geometry has grown into a field concerned more generally with geometric structures on differentiable manifolds. A geometric structure is one which defines some notion of size, distance, shape, volume, or other rigidifying structu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Counterexample
A counterexample is any exception to a generalization. In logic a counterexample disproves the generalization, and does so rigorously in the fields of mathematics and philosophy. For example, the fact that "John Smith is not a lazy student" is a counterexample to the generalization “students are lazy”, and both a counterexample to, and disproof of, the universal quantification “all students are lazy.” In mathematics, the term "counterexample" is also used (by a slight abuse) to refer to examples which illustrate the necessity of the full hypothesis of a theorem. This is most often done by considering a case where a part of the hypothesis is not satisfied and the conclusion of the theorem does not hold. In mathematics In mathematics, counterexamples are often used to prove the boundaries of possible theorems. By using counterexamples to show that certain conjectures are false, mathematical researchers can then avoid going down blind alleys and learn to modify conjectures t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Shing-Tung Yau
Shing-Tung Yau (; ; born April 4, 1949) is a Chinese-American mathematician and the William Caspar Graustein Professor of Mathematics at Harvard University. In April 2022, Yau announced retirement from Harvard to become Chair Professor of mathematics at Tsinghua University. Yau was born in Shantou, China, moved to Hong Kong at a young age, and to the United States in 1969. He was awarded the Fields Medal in 1982, in recognition of his contributions to partial differential equations, the Calabi conjecture, the positive energy theorem, and the Monge–Ampère equation. Yau is considered one of the major contributors to the development of modern differential geometry and geometric analysis. The impact of Yau's work can be seen in the mathematical and physical fields of differential geometry, partial differential equations, convex geometry, algebraic geometry, enumerative geometry, mirror symmetry, general relativity, and string theory, while his work has also touched upon applied ma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Richard Schoen
Richard Melvin Schoen (born October 23, 1950) is an American mathematician known for his work in differential geometry and geometric analysis. He is best known for the resolution of the Yamabe problem in 1984. Career Born in Celina, Ohio, and a 1968 graduate of Fort Recovery High School, he received his B.S. from the University of Dayton in mathematics. He then received his PhD in 1977 from Stanford University. After faculty positions at the Courant Institute, NYU, University of California, Berkeley, and University of California, San Diego, he was Professor at Stanford University from 1987–2014, as Bass Professor of Humanities and Sciences since 1992. He is currently Distinguished Professor and Excellence in Teaching Chair at the University of California, Irvine. His surname is pronounced "Shane." Schoen received an NSF Graduate Research Fellowship in 1972 and a Sloan Research Fellowship in 1979. Schoen is a 1983 MacArthur Fellow. He has been invited to speak at the Interna ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Isometry
In mathematics, an isometry (or congruence, or congruent transformation) is a distance-preserving transformation between metric spaces, usually assumed to be bijective. The word isometry is derived from the Ancient Greek: ἴσος ''isos'' meaning "equal", and μέτρον ''metron'' meaning "measure". Introduction Given a metric space (loosely, a set and a scheme for assigning distances between elements of the set), an isometry is a transformation which maps elements to the same or another metric space such that the distance between the image elements in the new metric space is equal to the distance between the elements in the original metric space. In a two-dimensional or three-dimensional Euclidean space, two geometric figures are congruent if they are related by an isometry; the isometry that relates them is either a rigid motion (translation or rotation), or a composition of a rigid motion and a reflection. Isometries are often used in constructions where one space i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Universal Cover
A covering of a topological space X is a continuous map \pi : E \rightarrow X with special properties. Definition Let X be a topological space. A covering of X is a continuous map : \pi : E \rightarrow X such that there exists a discrete space D and for every x \in X an open neighborhood U \subset X, such that \pi^(U)= \displaystyle \bigsqcup_ V_d and \pi, _:V_d \rightarrow U is a homeomorphism for every d \in D . Often, the notion of a covering is used for the covering space E as well as for the map \pi : E \rightarrow X. The open sets V_ are called sheets, which are uniquely determined up to a homeomorphism if U is connected. For each x \in X the discrete subset \pi^(x) is called the fiber of x. The degree of a covering is the cardinality of the space D. If E is path-connected, then the covering \pi : E \rightarrow X is denoted as a path-connected covering. Examples * For every topological space X there exists the covering \pi:X \rightarrow X with \pi(x)=x, which is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Diffeomorphic
In mathematics, a diffeomorphism is an isomorphism of smooth manifolds. It is an Inverse function, invertible Function (mathematics), function that maps one differentiable manifold to another such that both the function and its inverse function, inverse are differentiable. Definition Given two manifolds M and N, a Differentiable manifold#Differentiable functions, differentiable Map (mathematics), map f \colon M \rightarrow N is called a diffeomorphism if it is a bijection and its inverse f^ \colon N \rightarrow M is differentiable as well. If these functions are r times continuously differentiable, f is called a C^r-diffeomorphism. Two manifolds M and N are diffeomorphic (usually denoted M \simeq N) if there is a diffeomorphism f from M to N. They are C^r-diffeomorphic if there is an r times continuously differentiable bijective map between them whose inverse is also r times continuously differentiable. Diffeomorphisms of subsets of manifolds Given a subset X of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fundamental Group
In the mathematical field of algebraic topology, the fundamental group of a topological space is the group of the equivalence classes under homotopy of the loops contained in the space. It records information about the basic shape, or holes, of the topological space. The fundamental group is the first and simplest homotopy group. The fundamental group is a homotopy invariant—topological spaces that are homotopy equivalent (or the stronger case of homeomorphic) have isomorphic fundamental groups. The fundamental group of a topological space X is denoted by \pi_1(X). Intuition Start with a space (for example, a surface), and some point in it, and all the loops both starting and ending at this point— paths that start at this point, wander around and eventually return to the starting point. Two loops can be combined in an obvious way: travel along the first loop, then along the second. Two loops are considered equivalent if one can be deformed into the other without breakin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Flat Manifold
In mathematics, a Riemannian manifold is said to be flat if its Riemann curvature tensor is everywhere zero. Intuitively, a flat manifold is one that "locally looks like" Euclidean space in terms of distances and angles, e.g. the interior angles of a triangle add up to 180°. The universal cover of a complete flat manifold is Euclidean space. This can be used to prove the theorem of that all compact flat manifolds are finitely covered by tori; the 3-dimensional case was proved earlier by . Examples The following manifolds can be endowed with a flat metric. Note that this may not be their 'standard' metric (for example, the flat metric on the 2-dimensional torus is not the metric induced by its usual embedding into \mathbb^3). Dimension 1 Every one-dimensional Riemannian manifold is flat. Conversely, given that every connected one-dimensional smooth manifold is diffeomorphic to either \mathbb or S^1, it is straightforward to see that every connected one-dimensional Riemannian mani ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mikhael Gromov (mathematician)
Mikhael Leonidovich Gromov (also Mikhail Gromov, Michael Gromov or Misha Gromov; russian: link=no, Михаи́л Леони́дович Гро́мов; born 23 December 1943) is a Russian-French mathematician known for his work in geometry, Mathematical analysis, analysis and group theory. He is a permanent member of IHÉS in France and a professor of mathematics at New York University. Gromov has won several prizes, including the Abel Prize in 2009 "for his revolutionary contributions to geometry". Biography Mikhail Gromov was born on 23 December 1943 in Boksitogorsk, Soviet Union. His Russian father Leonid Gromov and his Jewish mother Lea Rabinovitz were pathologists. His mother was the cousin of World Chess Champion Mikhail Botvinnik, as well as of the mathematician Isaak Moiseevich Rabinovich. Gromov was born during World War II, and his mother, who worked as a medical doctor in the Soviet Army, had to leave the front line in order to give birth to him. When Gromov was nine ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]