McKay–Miller–Širáň Graph
   HOME





McKay–Miller–Širáň Graph
In graph theory, the McKay–Miller–Širáň graphs are an infinite class of vertex-transitive graphs with diameter two, and with a large number of vertices relative to their diameter and degree. They are named after Brendan McKay, Mirka Miller, and Jozef Širáň, who first constructed them using voltage graphs in 1998. Background The context for the construction of these graphs is the degree diameter problem in graph theory, which seeks the largest possible graph for each combination of degree and diameter. For graphs of diameter two, every vertex can be reached in two steps from an arbitrary starting vertex, and if the degree is d then at most d vertices can be reached in one step and another d(d-1) in two steps, giving the Moore bound that the total number of vertices can be at most d^2+1. However, only four graphs are known to reach this bound: a single edge (degree one), a 5-vertex cycle graph (degree two), the Petersen graph (degree three), and the Hoffman–Singleton gr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Graph Theory
In mathematics and computer science, graph theory is the study of ''graph (discrete mathematics), graphs'', which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of ''Vertex (graph theory), vertices'' (also called ''nodes'' or ''points'') which are connected by ''Glossary of graph theory terms#edge, edges'' (also called ''arcs'', ''links'' or ''lines''). A distinction is made between undirected graphs, where edges link two vertices symmetrically, and directed graphs, where edges link two vertices asymmetrically. Graphs are one of the principal objects of study in discrete mathematics. Definitions Definitions in graph theory vary. The following are some of the more basic ways of defining graphs and related mathematical structures. Graph In one restricted but very common sense of the term, a graph is an ordered pair G=(V,E) comprising: * V, a Set (mathematics), set of vertices (also called nodes or points); * ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Modular Arithmetic
In mathematics, modular arithmetic is a system of arithmetic operations for integers, other than the usual ones from elementary arithmetic, where numbers "wrap around" when reaching a certain value, called the modulus. The modern approach to modular arithmetic was developed by Carl Friedrich Gauss in his book '' Disquisitiones Arithmeticae'', published in 1801. A familiar example of modular arithmetic is the hour hand on a 12-hour clock. If the hour hand points to 7 now, then 8 hours later it will point to 3. Ordinary addition would result in , but 15 reads as 3 on the clock face. This is because the hour hand makes one rotation every 12 hours and the hour number starts over when the hour hand passes 12. We say that 15 is ''congruent'' to 3 modulo 12, written 15 ≡ 3 (mod 12), so that 7 + 8 ≡ 3 (mod 12). Similarly, if one starts at 12 and waits 8 hours, the hour hand will be at 8. If one instead waited twice as long, 16 hours, the hour hand would be on 4. This ca ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Discrete Mathematics (journal)
''Discrete Mathematics'' is a biweekly peer-reviewed scientific journal in the broad area of discrete mathematics, combinatorics, graph theory, and their applications. It was established in 1971 and is published by North-Holland Publishing Company. It publishes both short notes, full length contributions, as well as survey articles. In addition, the journal publishes a number of special issues each year dedicated to a particular topic. Although originally it published articles in French and German, it now allows only English language articles. The editor-in-chief is Douglas West ( University of Illinois, Urbana). History The journal was established in 1971. The first article it published was written by Paul Erdős, who went on to publish a total of 84 papers in the journal. Abstracting and indexing The journal is abstracted and indexed in: According to the ''Journal Citation Reports'', the journal has a 2020 impact factor The impact factor (IF) or journal impact facto ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Journal Of Combinatorial Theory
The ''Journal of Combinatorial Theory'', Series A and Series B, are mathematical journals specializing in combinatorics and related areas. They are published by Elsevier. ''Series A'' is concerned primarily with structures, designs, and applications of combinatorics. ''Series B'' is concerned primarily with graph and matroid theory. The two series are two of the leading journals in the field and are widely known as ''JCTA'' and ''JCTB''. The journal was founded in 1966 by Frank Harary and Gian-Carlo Rota.They are acknowledged on the journals' title pages and Web sites. SeEditorial board of JCTAEditorial board of JCTB
Originally there was only one journal, which was split into two parts in 1971 as the field grew rapidly. In 2020, most of the editorial board of ''JCTA'' resigned to form a new,

picture info

Integral Graph
In the mathematical field of graph theory, an integral graph is a graph whose adjacency matrix's spectrum consists entirely of integers. In other words, a graph is an integral graph if all of the roots of the characteristic polynomial of its adjacency matrix are integers. The notion was introduced in 1974 by Frank Harary and Allen Schwenk. Examples *The complete graph ''Kn'' is integral for all ''n''. *The only cycle graphs that are integral are C_3, C_4, and C_6. *If a graph is integral, then so is its complement graph; for instance, the complements of complete graphs, edgeless graphs, are integral. If two graphs are integral, then so is their Cartesian product and strong product; for instance, the Cartesian products of two complete graphs, the rook's graphs, are integral. Similarly, the hypercube graphs, as Cartesian products of any number of complete graphs K_2, are integral. *The line graph of a regular integral graph is again integral. For instance, as the line graph of K ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Spectral Graph Theory
In mathematics, spectral graph theory is the study of the properties of a Graph (discrete mathematics), graph in relationship to the characteristic polynomial, eigenvalues, and eigenvectors of matrices associated with the graph, such as its adjacency matrix or Laplacian matrix. The adjacency matrix of a simple undirected graph is a Real number, real symmetric matrix and is therefore Orthogonal diagonalization, orthogonally diagonalizable; its eigenvalues are real algebraic integers. While the adjacency matrix depends on the vertex labeling, its Spectrum of a matrix, spectrum is a graph invariant, although not a complete one. Spectral graph theory is also concerned with graph parameters that are defined via multiplicities of eigenvalues of matrices associated to the graph, such as the Colin de Verdière graph invariant, Colin de Verdière number. Cospectral graphs Two graphs are called cospectral or isospectral if the adjacency matrices of the graphs are isospectral, that is, if t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Finite Field
In mathematics, a finite field or Galois field (so-named in honor of Évariste Galois) is a field (mathematics), field that contains a finite number of Element (mathematics), elements. As with any field, a finite field is a Set (mathematics), set on which the operations of multiplication, addition, subtraction and division are defined and satisfy certain basic rules. The most common examples of finite fields are the integers mod n, integers mod p when p is a prime number. The ''order'' of a finite field is its number of elements, which is either a prime number or a prime power. For every prime number p and every positive integer k there are fields of order p^k. All finite fields of a given order are isomorphism, isomorphic. Finite fields are fundamental in a number of areas of mathematics and computer science, including number theory, algebraic geometry, Galois theory, finite geometry, cryptography and coding theory. Properties A finite field is a finite set that is a fiel ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Affine Plane
In geometry, an affine plane is a two-dimensional affine space. Definitions There are two ways to formally define affine planes, which are equivalent for affine planes over a field. The first way consists in defining an affine plane as a set on which a vector space of dimension two acts simply transitively. Intuitively, this means that an affine plane is a vector space of dimension two in which one has "forgotten" where the origin is. The second way occurs in incidence geometry, where an affine plane is defined as an abstract system of points and lines satisfying a system of axioms. Coordinates and isomorphism All the affine planes defined over a field are isomorphic. More precisely, the choice of an affine coordinate system (or, in the real case, a Cartesian coordinate system) for an affine plane P over a field F induces an isomorphism of affine planes between P and F^2. In the more general situation, where the affine planes are not defined over a field, they will in gener ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Levi Graph
In combinatorial mathematics, a Levi graph or incidence graph is a bipartite graph associated with an incidence structure.. See in particulap. 181 From a collection of points and lines in an incidence geometry or a projective configuration, we form a graph with one vertex per point, one vertex per line, and an edge for every incidence between a point and a line. They are named for Friedrich Wilhelm Levi, who wrote about them in 1942. The Levi graph of a system of points and lines usually has girth at least six: Any 4-cycles would correspond to two lines through the same two points. Conversely any bipartite graph with girth at least six can be viewed as the Levi graph of an abstract incidence structure. Levi graphs of configurations are biregular, and every biregular graph with girth at least six can be viewed as the Levi graph of an abstract configuration.. Levi graphs may also be defined for other types of incidence structure, such as the incidences between points and planes ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Dipole Graph
In graph theory, a dipole graph, dipole, bond graph, or linkage, is a multigraph consisting of two vertex (graph theory), vertices connected with a number of Multiple edges, parallel edges. A dipole graph containing edges is called the dipole graph, and is denoted by . The dipole graph is dual graph, dual to the cycle graph . The Hexagonal lattice, honeycomb as an abstract graph is the maximal abelian covering graph of the dipole graph , while the Diamond cubic, diamond crystal as an abstract graph is the maximal abelian covering graph of . Similarly to the Platonic graphs, the dipole graphs form the skeletons of the hosohedron, hosohedra. Their duals, the cycle graphs, form the skeletons of the dihedron, dihedra. References

* * Jonathan L. Gross and Jay Yellen, 2006. ''Graph Theory and Its Applications, 2nd Ed.'', p. 17. Chapman & Hall/CRC. * Toshikazu Sunada, Sunada T., ''Topological Crystallography, With a View Towards Discrete Geometric Analysis'', Springer, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Complete Bipartite Graph
In the mathematical field of graph theory, a complete bipartite graph or biclique is a special kind of bipartite graph where every vertex of the first set is connected to every vertex of the second set..Electronic edition page 17. Graph theory itself is typically dated as beginning with Leonhard Euler's 1736 work on the Seven Bridges of Königsberg. However, drawings of complete bipartite graphs were already printed as early as 1669, in connection with an edition of the works of Ramon Llull edited by Athanasius Kircher. Llull himself had made similar drawings of complete graphs three centuries earlier.. Definition A complete bipartite graph is a graph whose vertices can be partitioned into two subsets and such that no edge has both endpoints in the same subset, and every possible edge that could connect vertices in different subsets is part of the graph. That is, it is a bipartite graph such that for every two vertices and, is an edge in . A complete bipartite graph w ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Covering Graph
In the mathematical discipline of graph theory, a graph is a covering graph of another graph if there is a covering map from the vertex set of to the vertex set of . A covering map is a surjection and a local isomorphism: the neighbourhood of a vertex in is mapped bijectively onto the neighbourhood of in . The term lift is often used as a synonym for a covering graph of a connected graph. Though it may be misleading, there is no (obvious) relationship between covering graph and vertex cover or edge cover. The combinatorial formulation of covering graphs is immediately generalized to the case of multigraphs. A covering graph is a special case of a covering complex. Both covering complexes and multigraphs with a 1-dimensional cell complex, are nothing but examples of covering spaces of topological spaces, so the terminology in the theory of covering spaces is available; say covering transformation group, universal covering, abelian covering, and maximal abelian covering ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]