Mathematics Of Three-phase Electric Power
In electrical engineering, three-phase electric power systems have at least three conductors carrying alternating voltages that are offset in time by one-third of the period. A three-phase system may be arranged in delta (∆) or star (Y) (also denoted as wye in some areas, as symbolically it is similar to the letter 'Y'). A wye system allows the use of two different voltages from all three phases, such as a 230/400 V system which provides 230 V between the neutral (centre hub) and any one of the phases, and 400 V across any two phases. A delta system arrangement only provides one voltage, but it has a greater redundancy as it may continue to operate normally with one of the three supply windings offline, albeit at 57.7% of total capacity. Harmonic current in the neutral may become very large if nonlinear loads are connected. Definitions In a star (wye) connected topology, with rotation sequence L1 - L2 - L3, the time-varying instantaneous voltages can be calculat ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
3 Phase AC Waveform
3 (three) is a number, numeral and digit. It is the natural number following 2 and preceding 4, and is the smallest odd prime number and the only prime preceding a square number. It has religious or cultural significance in many societies. Evolution of the Arabic digit The use of three lines to denote the number 3 occurred in many writing systems, including some (like Roman and Chinese numerals) that are still in use. That was also the original representation of 3 in the Brahmic (Indian) numerical notation, its earliest forms aligned vertically. However, during the Gupta Empire the sign was modified by the addition of a curve on each line. The Nāgarī script rotated the lines clockwise, so they appeared horizontally, and ended each line with a short downward stroke on the right. In cursive script, the three strokes were eventually connected to form a glyph resembling a with an additional stroke at the bottom: ३. The Indian digits spread to the Caliphate in the 9th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Direct Current
Direct current (DC) is one-directional flow of electric charge. An electrochemical cell is a prime example of DC power. Direct current may flow through a conductor such as a wire, but can also flow through semiconductors, insulators, or even through a vacuum as in electron or ion beams. The electric current flows in a constant direction, distinguishing it from alternating current (AC). A term formerly used for this type of current was galvanic current. The abbreviations ''AC'' and ''DC'' are often used to mean simply ''alternating'' and ''direct'', as when they modify ''current'' or ''voltage''. Direct current may be converted from an alternating current supply by use of a rectifier, which contains electronic elements (usually) or electromechanical elements (historically) that allow current to flow only in one direction. Direct current may be converted into alternating current via an inverter. Direct current has many uses, from the charging of batteries to large power sup ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Y-Δ Transform
The Y-Δ transform, also written wye-delta and also known by many other names, is a mathematical technique to simplify the analysis of an electrical network. The name derives from the shapes of the circuit diagrams, which look respectively like the letter Y and the Greek capital letter Δ. This circuit transformation theory was published by Arthur Edwin Kennelly in 1899. It is widely used in analysis of three-phase electric power circuits. The Y-Δ transform can be considered a special case of the star-mesh transform for three resistors. In mathematics, the Y-Δ transform plays an important role in theory of circular planar graphs. Names The Y-Δ transform is known by a variety of other names, mostly based upon the two shapes involved, listed in either order. The Y, spelled out as wye, can also be called T or star; the Δ, spelled out as delta, can also be called triangle, Π (spelled out as pi), or mesh. Thus, common names for the transformation include wye-delta or delta ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Three-phase Electric Power
Three-phase electric power (abbreviated 3φ) is a common type of alternating current used in electricity generation, transmission, and distribution. It is a type of polyphase system employing three wires (or four including an optional neutral return wire) and is the most common method used by electrical grids worldwide to transfer power. Three-phase electrical power was developed in the 1880s by multiple people. Three-phase power works by the voltage and currents being 120 degrees out of phase on the three wires. As an AC system it allows the voltages to be easily stepped up using transformers to high voltage for transmission, and back down for distribution, giving high efficiency. A three-wire three-phase circuit is usually more economical than an equivalent two-wire single-phase circuit at the same line to ground voltage because it uses less conductor material to transmit a given amount of electrical power. Three-phase power is mainly used directly to power large induction ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Polyphase System
A polyphase system is a means of distributing alternating-current (AC) electrical power where the power transfer is constant during each electrical cycle. AC phase refers to the phase offset value (in degrees) between AC in multiple conducting wires; ''phases'' may also refer to the corresponding terminals and conductors, as in color codes. Polyphase systems have three or more energized electrical conductors carrying alternating currents with a defined phase between the voltage waves in each conductor; for three-phase voltage, the phase angle is 120° or 2π/3 radians (although early systems used 4 wire two-phase). Polyphase systems are particularly useful for transmitting power to electric motors which rely on alternating current to rotate. The most common example is the three-phase power system used for industrial applications and for power transmission. Compared to a single-phase, two-wire system, a three-phase three-wire system transmits three times as much power for the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Nikola Tesla
Nikola Tesla ( ; ,"Tesla" ''''. ; 1856 – 7 January 1943) was a , electrical engineer, , and ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mikhail Dolivo-Dobrovolsky
Mikhail Osipovich Dolivo-Dobrovolsky (russian: Михаи́л О́сипович Доли́во-Доброво́льский; german: Michail von Dolivo-Dobrowolsky or ''Michail Ossipowitsch Doliwo-Dobrowolski''; – ) was a Russian Empire-born engineer, electrician, and inventor of Polish-Russian origins, active in the German Empire and also in Switzerland. After studying in Germany and while working in Berlin for ''Allgemeine Elektricitäts-Gesellschaft'' (AEG), he became one of the founders (the others were Nikola Tesla, Galileo Ferraris and Jonas Wenström) of polyphase electrical systems, developing the three-phase electrical generator and a three-phase electrical motor (1888) and studying star and delta connections. The triumph of the three-phase system was displayed in Europe at the International Electro-Technical Exhibition of 1891, where Dolivo-Dobrovolsky used this system to transmit electric power at the distance of 176 km with 75% efficiency. In 1891 he ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
John Hopkinson
John Hopkinson, FRS, (27 July 1849 – 27 August 1898) was a British physicist, electrical engineer, Fellow of the Royal Society and President of the IEE (now the IET) twice in 1890 and 1896. He invented the three-wire (three-phase) system for the distribution of electrical power, for which he was granted a patent in 1882. He also worked in many areas of electromagnetism and electrostatics, and in 1890 was appointed professor of electrical engineering at King's College London, where he was also director of the Siemens Laboratory. Hopkinson's law, the magnetic counterpart to Ohm's law, is named after him. Life and career John Hopkinson was born in Manchester, the eldest of 5 children. His father, also called John, was a mechanical engineer. He was educated at Queenwood School in Hampshire and Owens College in Manchester. He won a scholarship to Trinity College, Cambridge in 1867 and graduated in 1871 as Senior Wrangler, having placed first in the demanding Cambridge Mathemati ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Galileo Ferraris
Galileo Ferraris (31 October 1847 – 7 February 1897) was an Italian university professor, physicist and electrical engineer, one of the pioneers of AC power system and inventor of the induction motor although he never patented his work. Many newspapers touted that his work on the induction motor and power transmission systems were some of the greatest inventions of all ages. He published an extensive and complete monograph on the experimental results obtained with open-circuit transformers of the type designed by the power engineers Lucien Gaulard and John Dixon Gibbs. Biography Born at Livorno Vercellese (Kingdom of Sardinia), Ferraris gained a master's degree in engineering and became an assistant of technical physics near the Regal Italian Industrial Museum. Ferraris independently researched the rotary magnetic field in 1885. Ferraris experimented with different types of asynchronous electric motors. The research and his studies resulted in the development of an alter ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Charles Proteus Steinmetz
Charles Proteus Steinmetz (born Karl August Rudolph Steinmetz, April 9, 1865 – October 26, 1923) was a German-born American mathematician and electrical engineer and professor at Union College. He fostered the development of alternating current that made possible the expansion of the electric power industry in the United States, formulating mathematical theories for engineers. He made ground-breaking discoveries in the understanding of hysteresis that enabled engineers to design better electromagnetic apparatus equipment, especially electric motors for use in industry. At the time of his death, Steinmetz held over 200 patents. A genius in both mathematics and electronics, he did work that earned him the nicknames "Forger of Thunderbolts" and "The Wizard of Schenectady". Steinmetz's equation, Steinmetz solids, Steinmetz curves, and Steinmetz equivalent circuit are all named after him, as are numerous honors and scholarships, including the IEEE Charles Proteus Steinm ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Blondel's Theorem
Blondel's theorem, named after its discoverer, French electrical engineer André Blondel, is the result of his attempt to simplify both the measurement of electrical energy and the validation of such measurements. The result is a simple rule that specifies the minimum number of watt-hour meters required to measure the consumption of energy in any system of electrical conductors. The theorem states that ''the power provided to a system of N conductors is equal to the algebraic sum of the power measured by N watt-meters.'' ''The N watt-meters are separately connected such that each one measures the current level in one of the N conductors and the potential level between that conductor and a common point. In a further simplification, if that common point is located on one of the conductors, that conductor's meter can be removed and only N-1 meters are required.'' An electrical energy meter is a watt-meter whose measurements are integrated over time, thus the theorem applies to wa ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Motor–generator
A motor–generator (an M–G set) is a device for converting electrical power to another form. Motor–generator sets are used to convert frequency, voltage, or phase of power. They may also be used to isolate electrical loads from the electrical power supply line. Large motor–generators were widely used to convert industrial amounts of power while smaller motor–generators (such as the one shown in the picture) were used to convert battery power to higher DC voltages. While a motor–generator set may consist of distinct motor and generator machines coupled together, a single unit dynamotor (for dynamo–motor) has the motor coils and the generator coils wound around a single rotor; both the motor and generator therefore share the same outer field coils or magnets.Radio Amateur's Handbook 1976, pub. [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |