Löwenheim Number
   HOME
*





Löwenheim Number
In mathematical logic the Löwenheim number of an abstract logic is the smallest cardinal number for which a weak downward Löwenheim–Skolem theorem holds.Zhang 2002 page 77 They are named after Leopold Löwenheim, who proved that these exist for a very broad class of logics. Abstract logic An abstract logic, for the purpose of Löwenheim numbers, consists of: * A collection of "sentences"; * A collection of "models", each of which is assigned a cardinality; * A relation between sentences and models that says that a certain sentence is "satisfied" by a particular model. The theorem does not require any particular properties of the sentences or models, or of the satisfaction relation, and they may not be the same as in ordinary first-order logic. It thus applies to a very broad collection of logics, including first-order logic, higher-order logics, and infinitary logics. Definition The Löwenheim number of a logic ''L'' is the smallest cardinal ''κ'' such that if an arbitr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mathematical Logic
Mathematical logic is the study of logic, formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory. Research in mathematical logic commonly addresses the mathematical properties of formal systems of logic such as their expressive or deductive power. However, it can also include uses of logic to characterize correct mathematical reasoning or to establish foundations of mathematics. Since its inception, mathematical logic has both contributed to and been motivated by the study of foundations of mathematics. This study began in the late 19th century with the development of axiomatic frameworks for geometry, arithmetic, and Mathematical analysis, analysis. In the early 20th century it was shaped by David Hilbert's Hilbert's program, program to prove the consistency of foundational theories. Results of Kurt Gödel, Gerhard Gentzen, and others provided partial resolution to the program, and clarified the issues involved in pr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Supremum
In mathematics, the infimum (abbreviated inf; plural infima) of a subset S of a partially ordered set P is a greatest element in P that is less than or equal to each element of S, if such an element exists. Consequently, the term ''greatest lower bound'' (abbreviated as ) is also commonly used. The supremum (abbreviated sup; plural suprema) of a subset S of a partially ordered set P is the least element in P that is greater than or equal to each element of S, if such an element exists. Consequently, the supremum is also referred to as the ''least upper bound'' (or ). The infimum is in a precise sense dual to the concept of a supremum. Infima and suprema of real numbers are common special cases that are important in analysis, and especially in Lebesgue integration. However, the general definitions remain valid in the more abstract setting of order theory where arbitrary partially ordered sets are considered. The concepts of infimum and supremum are close to minimum and max ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Menachem Magidor
Menachem Magidor (Hebrew: מנחם מגידור; born January 24, 1946) is an Israeli mathematician who specializes in mathematical logic, in particular set theory. He served as president of the Hebrew University of Jerusalem, was president of the Association for Symbolic Logic from 1996 to 1998, and is currently the president of the Division for Logic, Methodology and Philosophy of Science and Technology of the International Union for History and Philosophy of Science (DLMPST/IUHPS; 2016-2019). In 2016 he was elected an honorary foreign member of the American Academy of Arts and Sciences. In 2018 he received the Solomon Bublick Award. Biography Menachem Magidor was born in Petah Tikva, Israel. He received his Ph.D. in 1973 from the Hebrew University of Jerusalem. His thesis, ''On Super Compact Cardinals'', was written under the supervision of Azriel Lévy. He served as president of the Hebrew University of Jerusalem from 1997 to 2009, following Hanoch Gutfreund and succeed ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Supercompact Cardinal
In set theory, a supercompact cardinal is a type of large cardinal. They display a variety of reflection properties. Formal definition If ''λ'' is any ordinal, ''κ'' is ''λ''-supercompact means that there exists an elementary embedding ''j'' from the universe ''V'' into a transitive inner model ''M'' with critical point ''κ'', ''j''(''κ'')>''λ'' and :^\lambda M\subseteq M \,. That is, ''M'' contains all of its ''λ''-sequences. Then ''κ'' is supercompact means that it is ''λ''-supercompact for all ordinals ''λ''. Alternatively, an uncountable cardinal ''κ'' is supercompact if for every ''A'' such that , ''A'', ≥ ''κ'' there exists a normal measure over 'A''sup>< ''κ'' with the additional property that every function f: \to A such that \ \in U is constant on a set in U. Here "constan ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hanf Number
''Cannabis'' has many different names, including more than 1,200 slang terms, and more than 2,300 names for individual strains. Additionally, there are many names to describe the state of being under the influence of the substance. This list is not exhaustive; it includes well-attested names. The first recorded name for cannabis is the Chinese 麻 (Má), which is prehistoric. Formal names Strains, cultivation and preparation Commercial cannabis growers and retailers have given individual strains more than 2,300 names. A 2022 study in PLOS One, drawing data from almost 90,000 samples from six US states, representing the largest quantitative chemical mapping of commercial dispensary-grade cannabis flower samples to date, found that “commercial labels do not consistently align with the observed chemical diversity.” In other words, many strain names do not necessarily reflect the actual cannabinoid content or its perceived effects. Medical cannabis Formal t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Measurable Cardinal
In mathematics, a measurable cardinal is a certain kind of large cardinal number. In order to define the concept, one introduces a two-valued measure on a cardinal , or more generally on any set. For a cardinal , it can be described as a subdivision of all of its subsets into large and small sets such that itself is large, and all singletons are small, complements of small sets are large and vice versa. The intersection of fewer than large sets is again large. It turns out that uncountable cardinals endowed with a two-valued measure are large cardinals whose existence cannot be proved from ZFC. The concept of a measurable cardinal was introduced by Stanislaw Ulam in 1930. Definition Formally, a measurable cardinal is an uncountable cardinal number κ such that there exists a κ-additive, non-trivial, 0-1-valued measure on the power set of ''κ''. (Here the term ''κ-additive'' means that, for any sequence ''A''''α'', α<λ of cardinality '' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Second-order Logic
In logic and mathematics, second-order logic is an extension of first-order logic, which itself is an extension of propositional logic. Second-order logic is in turn extended by higher-order logic and type theory. First-order logic quantifies only variables that range over individuals (elements of the domain of discourse); second-order logic, in addition, also quantifies over relations. For example, the second-order sentence \forall P\,\forall x (Px \lor \neg Px) says that for every formula ''P'', and every individual ''x'', either ''Px'' is true or not(''Px'') is true (this is the law of excluded middle). Second-order logic also includes quantification over sets, functions, and other variables (see section below). Both first-order and second-order logic use the idea of a domain of discourse (often called simply the "domain" or the "universe"). The domain is a set over which individual elements may be quantified. Examples First-order logic can quantify over individuals, bu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Elementary Substructure
In model theory, a branch of mathematical logic, two structures ''M'' and ''N'' of the same signature ''σ'' are called elementarily equivalent if they satisfy the same first-order ''σ''-sentences. If ''N'' is a substructure of ''M'', one often needs a stronger condition. In this case ''N'' is called an elementary substructure of ''M'' if every first-order ''σ''-formula ''φ''(''a''1, …, ''a''''n'') with parameters ''a''1, …, ''a''''n'' from ''N'' is true in ''N'' if and only if it is true in ''M''. If ''N'' is an elementary substructure of ''M'', then ''M'' is called an elementary extension of ''N''. An embedding ''h'': ''N'' → ''M'' is called an elementary embedding of ''N'' into ''M'' if ''h''(''N'') is an elementary substructure of ''M''. A substructure ''N'' of ''M'' is elementary if and only if it passes the Tarski–Vaught test: every first-order formula ''φ''(''x'', ''b''1, …, ''b''''n'') with para ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Axiom Of Replacement
In set theory, the axiom schema of replacement is a schema of axioms in Zermelo–Fraenkel set theory (ZF) that asserts that the image of any set under any definable mapping is also a set. It is necessary for the construction of certain infinite sets in ZF. The axiom schema is motivated by the idea that whether a class is a set depends only on the cardinality of the class, not on the rank of its elements. Thus, if one class is "small enough" to be a set, and there is a surjection from that class to a second class, the axiom states that the second class is also a set. However, because ZFC only speaks of sets, not proper classes, the schema is stated only for definable surjections, which are identified with their defining formulas. Statement Suppose P is a definable binary relation (which may be a proper class) such that for every set x there is a unique set y such that P(x,y) holds. There is a corresponding definable function F_P, where F_P(x)=y if and only if P(x,y). Consider ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Abstract Logic
''Abstract Logic'' is the first collaborative live album by bassist Jonas Hellborg and guitarist Shawn Lane, released in 1995 through Day Eight Music; a remastered and remixed edition, containing a revised track listing and two extra tracks, was reissued through Bardo Records in 2004. For this lineup, they are joined by drummer Kofi Baker. Critical reception Robert Taylor at AllMusic gave ''Abstract Logic'' four stars out of five, calling it "a very good recording" but criticising Shawn Lane's guitar playing as inconsistent on the album. He praised Lane for sounding "positively demonic" and "demented, original and exciting" on some songs, but sounding too much like Allan Holdsworth on others. Track listing 2004 remastered edition Personnel *Jonas Hellborg – bass, production *Shawn Lane – vocals, guitar, keyboard *Kofi Baker – drums *Stéphane Jean – engineering Engineering is the use of scientific principles to design and build machines, structures, an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Set (mathematics)
A set is the mathematical model for a collection of different things; a set contains '' elements'' or ''members'', which can be mathematical objects of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other sets. The set with no element is the empty set; a set with a single element is a singleton. A set may have a finite number of elements or be an infinite set. Two sets are equal if they have precisely the same elements. Sets are ubiquitous in modern mathematics. Indeed, set theory, more specifically Zermelo–Fraenkel set theory, has been the standard way to provide rigorous foundations for all branches of mathematics since the first half of the 20th century. History The concept of a set emerged in mathematics at the end of the 19th century. The German word for set, ''Menge'', was coined by Bernard Bolzano in his work ''Paradoxes of the Infinite''. Georg Cantor, one of the founders of set theory, gave the following defin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Infinitary Logic
An infinitary logic is a logic Logic is the study of correct reasoning. It includes both formal and informal logic. Formal logic is the science of deductively valid inferences or of logical truths. It is a formal science investigating how conclusions follow from premises ... that allows infinitely long statement (logic), statements and/or infinitely long Mathematical proof, proofs. Some infinitary logics may have different properties from those of standard first-order logic. In particular, infinitary logics may fail to be Compactness (logic), compact or Completeness (logic), complete. Notions of compactness and completeness that are equivalent in finitary logic sometimes are not so in infinitary logics. Therefore for infinitary logics, notions of strong compactness and strong completeness are defined. This article addresses Hilbert system, Hilbert-type infinitary logics, as these have been extensively studied and constitute the most straightforward extensions of finitary logi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]