Luminosity (scattering Theory)
   HOME





Luminosity (scattering Theory)
In scattering theory and accelerator physics, luminosity (''L'') is the ratio of the number of events detected (''dN'') in a certain period of time (''dt'') to the cross-section (''σ''): : L = \frac\frac. It has the dimensions of events on time on area, and is usually expressed in the cgs units of cm−2· s−1 or the non-SI units of b−1·s−1. In practice, ''L'' is dependent on the particle beam parameters, such as beam width and particle flow rate, as well as the target properties, such as target size and density. A related quantity is integrated luminosity (''L''int), which is the integral of the luminosity with respect to time: : L_\mathrm = \int L \ dt. The luminosity and integrated luminosity are useful values to characterize the performance of a particle accelerator. In particular, all collider experiments aim to maximize their integrated luminosities, as the higher the integrated luminosity, the more data is available to analyze. Examples of collider lum ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Tevatron
The Tevatron was a circular particle accelerator (active until 2011) in the United States, at the Fermilab, Fermi National Accelerator Laboratory (called ''Fermilab''), east of Batavia, Illinois, and was the highest energy particle collider until the Large Hadron Collider (LHC) of the CERN, European Organization for Nuclear Research (CERN) was built near Geneva, Switzerland. The Tevatron was a synchrotron that accelerated protons and antiprotons in a circumference ring to energies of up to 1 TeV, hence its name. The Tevatron was completed in 1983 at a cost of $120 million and significant upgrade investments were made during its active years of 1983–2011. The main achievement of the Tevatron was the discovery in 1995 of the top quark—the last Elementary particle#Fundamental fermions, fundamental fermion predicted by the Standard Model of particle physics. On July 2, 2012, scientists of the Collider Detector at Fermilab, CDF and D0 experiment, DØ collider experiment teams a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Scattering Theory
In physics, scattering is a wide range of physical processes where moving particles or radiation of some form, such as light or sound, are forced to deviate from a straight trajectory by localized non-uniformities (including particles and radiation) in the medium through which they pass. In conventional use, this also includes deviation of reflected radiation from the angle predicted by the law of reflection. Reflections of radiation that undergo scattering are often called ''diffuse reflections'' and unscattered reflections are called ''specular'' (mirror-like) reflections. Originally, the term was confined to light scattering (going back at least as far as Isaac Newton in the 17th century). As more "ray"-like phenomena were discovered, the idea of scattering was extended to them, so that William Herschel could refer to the scattering of "heat rays" (not then recognized as electromagnetic in nature) in 1800. John Tyndall, a pioneer in light scattering research, noted the connecti ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Beta Function (accelerator Physics)
The beta function in accelerator physics is a function related to the transverse size of the particle beam at the location s along the nominal beam trajectory. It is related to the transverse beam size as follows: \sigma(s) = \sqrt where * s is the location along the nominal beam trajectory * the beam is assumed to have a Gaussian shape in the transverse direction * \sigma(s) is the width parameter of this Gaussian * \epsilon is the RMS geometrical beam emittance, which is normally constant along the trajectory when there is no acceleration Typically, separate beta functions are used for two perpendicular directions in the plane transverse to the beam direction (e.g. horizontal and vertical directions). The beta function is one of the Courant–Snyder parameters (also called Twiss parameters). Beta star The value of the beta function at an interaction point is referred to as beta star. The beta function is typically adjusted to have a local minimum at such points (in ord ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cross Section (physics)
In physics, the cross section is a measure of the probability that a specific process will take place in a collision of two particles. For example, the Rutherford cross-section is a measure of probability that an alpha particle will be deflected by a given angle during an interaction with an atomic nucleus. Cross section is typically denoted (sigma) and is expressed in units of area, more specifically in barns. In a way, it can be thought of as the size of the object that the excitation must hit in order for the process to occur, but more exactly, it is a parameter of a stochastic process. When two discrete particles interact in classical physics, their mutual cross section is the area transverse to their relative motion within which they must meet in order to scatter from each other. If the particles are hard inelastic sphere A sphere (from Ancient Greek, Greek , ) is a surface (mathematics), surface analogous to the circle, a curve. In solid geometry, a sphere is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Solid Angle
In geometry, a solid angle (symbol: ) is a measure of the amount of the field of view from some particular point that a given object covers. That is, it is a measure of how large the object appears to an observer looking from that point. The point from which the object is viewed is called the ''apex'' of the solid angle, and the object is said to '' subtend'' its solid angle at that point. In the International System of Units (SI), a solid angle is expressed in a dimensionless unit called a ''steradian'' (symbol: sr), which is equal to one square radian, sr = rad2. One steradian corresponds to one unit of area (of any shape) on the unit sphere surrounding the apex, so an object that blocks all rays from the apex would cover a number of steradians equal to the total surface area of the unit sphere, 4\pi. Solid angles can also be measured in squares of angular measures such as degrees, minutes, and seconds. A small object nearby may subtend the same solid angle as a larger object ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Differential Of A Function
In calculus, the differential represents the principal part of the change in a function y = f(x) with respect to changes in the independent variable. The differential dy is defined by dy = f'(x)\,dx, where f'(x) is the derivative of with respect to x, and dx is an additional real variable (so that dy is a function of x and dx). The notation is such that the equation dy = \frac\, dx holds, where the derivative is represented in the Leibniz notation dy/dx, and this is consistent with regarding the derivative as the quotient of the differentials. One also writes df(x) = f'(x)\,dx. The precise meaning of the variables dy and dx depends on the context of the application and the required level of mathematical rigor. The domain of these variables may take on a particular geometrical significance if the differential is regarded as a particular differential form, or analytical significance if the differential is regarded as a linear approximation to the increment of a function. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

High Luminosity Large Hadron Collider
The High Luminosity Large Hadron Collider (HL-LHC; formerly referred to as HiLumi LHC, Super LHC, and SLHC) is an upgrade to the Large Hadron Collider, operated by the European Organization for Nuclear Research (CERN), located at the French-Swiss border near Geneva. From 2011 to 2020, the project was led by Lucio Rossi. In 2020, the lead role was taken up by Oliver Brüning. The upgrade started as a design study in 2010, for which a European Framework Program 7 grant was allocated in 2011, with goal of boosting the accelerator's potential for new discoveries in physics. The design study was approved by the CERN Council in 2016 and HL-LHC became a full-fledged CERN project. The upgrade work is currently in progress and physics experiments are expected to start taking data at the earliest in 2028. The HL-LHC project will deliver proton-proton collisions at 14 TeV with an integrated luminosity of for both ATLAS and CMS experiments, for LHCb, and for ALICE. In the heavy-ion ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lead
Lead () is a chemical element; it has Chemical symbol, symbol Pb (from Latin ) and atomic number 82. It is a Heavy metal (elements), heavy metal that is density, denser than most common materials. Lead is Mohs scale, soft and Ductility, malleable, and also has a relatively low melting point. When freshly cut, lead is a shiny gray with a hint of blue. It tarnishes to a dull gray color when exposed to air. Lead has the highest atomic number of any stable nuclide, stable element and three of its isotopes are endpoints of major nuclear decay chains of heavier elements. Lead is a relatively unreactive post-transition metal. Its weak metallic character is illustrated by its Amphoterism, amphoteric nature; lead and lead oxides react with acids and base (chemistry), bases, and it tends to form covalent bonds. Lead compounds, Compounds of lead are usually found in the +2 oxidation state rather than the +4 state common with lighter members of the carbon group. Exceptions are mostly limited ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


SuperKEKB
SuperKEKB is a particle collider located at KEK (''High Energy Accelerator Research Organisation'') in Tsukuba, Ibaraki Prefecture, Japan. SuperKEKB collides electrons with positrons at the centre-of-momentum energy close to the mass of the Υ(4S) resonance making it a second-generation B-factory for the Belle II experiment. The accelerator is an upgrade to the KEKB accelerator, providing approximately 40 times higher luminosity, due mostly to superconducting quadrupole focusing magnets. The accelerator achieved "first turns" (first circulation of electron and positron beams) in February 2016. First collisions occurred on 26 April 2018. At 20:34 on 15 June 2020, SuperKEKB achieved the world’s highest instantaneous luminosity for a colliding-beam accelerator, setting a record of 2.22×1034 cm−2s−1. Description The SuperKEKB design reuses many components from KEKB. Under normal operation, SuperKEKB collides electrons at 7 GeV with positrons at 4 GeV (compared to KEKB at ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

KEKB (accelerator)
KEKB was a particle accelerator used in the Belle experiment to study CP violation. KEKB was located at the '' KEK'' (''High Energy Accelerator Research Organisation'') in Tsukuba, Ibaraki Prefecture, Japan. It has been superseded by its upgrade, the SuperKEKB accelerator (located at the same site). The SuperKEKB is a luminosity upgrade of KEKB. SuperKEKB had its first particle collisions in 2018. The SuperKEKB accelerator produces particle beams for the Belle II experiment, which is an upgrade of the Belle experiment (located at the same site as Belle). The Belle experiments studied b-quark hadrons to research CP violation. KEKB was called a B-factory for its copious production of B-mesons which provide a golden mode to study and measure the CP violation due to its property of decaying into other lighter mesons. KEKB was basically an asymmetric electron–positron collider, with electrons having the energy of 8 GeV and positrons having the energy of 3.5 GeV, giving 10.58 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

SLAC
SLAC National Accelerator Laboratory, originally named the Stanford Linear Accelerator Center, is a federally funded research and development center in Menlo Park, California, United States. Founded in 1962, the laboratory is now sponsored by the United States Department of Energy and administrated by Stanford University. It is the site of the Stanford Linear Accelerator, a 3.2 kilometer (2-mile) linear accelerator constructed in 1966 that could accelerate electrons to energies of 50 GeV. Today SLAC research centers on a broad program in atomic and solid-state physics, chemistry, biology, and medicine using X-rays from synchrotron radiation and a free-electron laser as well as experimental and theoretical research in elementary particle physics, accelerator physics, astroparticle physics, and cosmology. The laboratory is under the programmatic direction of the United States Department of Energy Office of Science. History Founded in 1962 as the Stanford Linear Accelera ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Electron
The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary charge, elementary electric charge. It is a fundamental particle that comprises the ordinary matter that makes up the universe, along with up quark, up and down quark, down quarks. Electrons are extremely lightweight particles that orbit the positively charged atomic nucleus, nucleus of atoms. Their negative charge is balanced by the positive charge of protons in the nucleus, giving atoms their overall electric charge#Charge neutrality, neutral charge. Ordinary matter is composed of atoms, each consisting of a positively charged nucleus surrounded by a number of orbiting electrons equal to the number of protons. The configuration and energy levels of these orbiting electrons determine the chemical properties of an atom. Electrons are bound to the nucleus to different degrees. The outermost or valence electron, valence electrons are the least tightly bound and are responsible for th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]