Lucas–Wieferich Prime
   HOME





Lucas–Wieferich Prime
In number theory, a Wieferich prime is a prime number ''p'' such that ''p''2 divides , therefore connecting these primes with Fermat's little theorem, which states that every odd prime ''p'' divides . Wieferich primes were first described by Arthur Wieferich in 1909 in works pertaining to Fermat's Last Theorem, at which time both of Fermat's theorems were already well known to mathematicians. Since then, connections between Wieferich primes and various other topics in mathematics have been discovered, including other types of numbers and primes, such as Mersenne and Fermat numbers, specific types of pseudoprimes and some types of numbers generalized from the original definition of a Wieferich prime. Over time, those connections discovered have extended to cover more properties of certain prime numbers as well as more general subjects such as number fields and the ''abc'' conjecture. , the only known Wieferich primes are 1093 and 3511 . Equivalent definitions The stronger ver ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Arthur Wieferich
Arthur Josef Alwin Wieferich (April 27, 1884 – September 15, 1954) was a German mathematician and teacher, remembered for his work on number theory, as exemplified by a type of prime numbers named after him. He was born in Münster, attended the University of Münster (1903–1909) and then worked as a school teacher and tutor until his retirement in 1949. He married in 1916 and had no children. Wieferich abandoned his studies after his graduation and did not publish any paper after 1909. His mathematical reputation is founded on five papers he published while a student at Münster: *. *. *. *. *. The first three papers are related to Waring's problem. His fourth paper led to the term ''Wieferich prime'', which are p such that p^2 divides 2^(p-1) - 1." See also * Wieferich pair * Wieferich's theorem *Wieferich prime In number theory, a Wieferich prime is a prime number ''p'' such that ''p''2 divides , therefore connecting these primes with Fermat's little theorem, which ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Remainder
In mathematics, the remainder is the amount "left over" after performing some computation. In arithmetic, the remainder is the integer "left over" after dividing one integer by another to produce an integer quotient ( integer division). In algebra of polynomials, the remainder is the polynomial "left over" after dividing one polynomial by another. The ''modulo operation'' is the operation that produces such a remainder when given a dividend and divisor. Alternatively, a remainder is also what is left after subtracting one number from another, although this is more precisely called the '' difference''. This usage can be found in some elementary textbooks; colloquially it is replaced by the expression "the rest" as in "Give me two dollars back and keep the rest." However, the term "remainder" is still used in this sense when a function is approximated by a series expansion, where the error expression ("the rest") is referred to as the remainder term. Integer division Gi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Conjecture
In mathematics, a conjecture is a conclusion or a proposition that is proffered on a tentative basis without proof. Some conjectures, such as the Riemann hypothesis or Fermat's conjecture (now a theorem, proven in 1995 by Andrew Wiles), have shaped much of mathematical history as new areas of mathematics are developed in order to prove them. Resolution of conjectures Proof Formal mathematics is based on ''provable'' truth. In mathematics, any number of cases supporting a universally quantified conjecture, no matter how large, is insufficient for establishing the conjecture's veracity, since a single counterexample could immediately bring down the conjecture. Mathematical journals sometimes publish the minor results of research teams having extended the search for a counterexample farther than previously done. For instance, the Collatz conjecture, which concerns whether or not certain sequences of integers terminate, has been tested for all integers up to 1.2 × 101 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Zero Of A Function
In mathematics, a zero (also sometimes called a root) of a real-, complex-, or generally vector-valued function f, is a member x of the domain of f such that f(x) ''vanishes'' at x; that is, the function f attains the value of 0 at x, or equivalently, x is a solution to the equation f(x) = 0. A "zero" of a function is thus an input value that produces an output of 0. A root of a polynomial is a zero of the corresponding polynomial function. The fundamental theorem of algebra shows that any non-zero polynomial has a number of roots at most equal to its degree, and that the number of roots and the degree are equal when one considers the complex roots (or more generally, the roots in an algebraically closed extension) counted with their multiplicities. For example, the polynomial f of degree two, defined by f(x)=x^2-5x+6=(x-2)(x-3) has the two roots (or zeros) that are 2 and 3. f(2)=2^2-5\times 2+6= 0\textf(3)=3^2-5\times 3+6=0. If the function maps real numbers to real n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Remainder
In mathematics, the remainder is the amount "left over" after performing some computation. In arithmetic, the remainder is the integer "left over" after dividing one integer by another to produce an integer quotient ( integer division). In algebra of polynomials, the remainder is the polynomial "left over" after dividing one polynomial by another. The ''modulo operation'' is the operation that produces such a remainder when given a dividend and divisor. Alternatively, a remainder is also what is left after subtracting one number from another, although this is more precisely called the '' difference''. This usage can be found in some elementary textbooks; colloquially it is replaced by the expression "the rest" as in "Give me two dollars back and keep the rest." However, the term "remainder" is still used in this sense when a function is approximated by a series expansion, where the error expression ("the rest") is referred to as the remainder term. Integer division Gi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Paul Gustav Heinrich Bachmann
Paul Gustav Heinrich Bachmann (22 June 1837 – 31 March 1920) was a German mathematician. Life Bachmann studied mathematics at the university of his native city of Berlin and received his doctorate in 1862 for his thesis on group theory. He then went to Breslau to study for his habilitation, which he received in 1864 for his thesis on Complex Units. He was a professor at Breslau and later at Münster. Works *''Zahlentheorie'', Bachmann's work on number theory in five volumes (1872-1923): **Vol. I: Die Elemente der Zahlentheorie' (1892) **Vol. II: Analytische Zahlentheorie' (1894), a work on analytic number theory in which Big O notation was first introduced **Vol. III: Die Lehre von der Kreistheilung und ihre Beziehungen zur Zahlentheorie' (first published in 1872) **Vol. IV (Part 1): Die Arithmetik der quadratischen Formen' (1898) **Vol. IV (Part 2): Die Arithmetik der quadratischen Formen' (posthumously published in 1923) **Vol. V: Allgemeine Arithmetik der Zahlenkörper' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


List Of Mathematical Symbols
A mathematical symbol is a figure or a combination of figures that is used to represent a mathematical object, an action on mathematical objects, a relation between mathematical objects, or for structuring the other symbols that occur in a formula or a mathematical expression. More formally, a ''mathematical symbol'' is any grapheme used in mathematical formulas and expressions. As formulas and expressions are entirely constituted with symbols of various types, many symbols are needed for expressing all mathematics. The most basic symbols are the decimal digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9), and the letters of the Latin alphabet. The decimal digits are used for representing numbers through the Hindu–Arabic numeral system. Historically, upper-case letters were used for representing points in geometry, and lower-case letters were used for variables and constants. Letters are used for representing many other types of mathematical object. As the number of these types has increased, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Odd Prime
A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways of writing it as a product, or , involve 5 itself. However, 4 is composite because it is a product (2 × 2) in which both numbers are smaller than 4. Primes are central in number theory because of the fundamental theorem of arithmetic: every natural number greater than 1 is either a prime itself or can be factorized as a product of primes that is unique up to their order. The property of being prime is called primality. A simple but slow method of checking the primality of a given number , called trial division, tests whether is a multiple of any integer between 2 and . Faster algorithms include the Miller–Rabin primality test, which is fast but has a small chance of error, and the AKS primality test, which always produce ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Journal Für Die Reine Und Angewandte Mathematik
''Crelle's Journal'', or just ''Crelle'', is the common name for a mathematics journal, the ''Journal für die reine und angewandte Mathematik'' (in English: ''Journal for Pure and Applied Mathematics''). History The journal was founded by August Leopold Crelle (Berlin) in 1826 and edited by him until his death in 1855. It was one of the first major mathematical journals that was not a proceedings of an academy. It has published many notable papers, including works of Niels Henrik Abel, Georg Cantor, Gotthold Eisenstein, Carl Friedrich Gauss and Otto Hesse. It was edited by Carl Wilhelm Borchardt from 1856 to 1880, during which time it was known as ''Borchardt's Journal''. The current editor-in-chief is Daniel Huybrechts (Rheinische Friedrich-Wilhelms-Universität Bonn). Past editors * 1826–1856: August Leopold Crelle * 1856–1880: Carl Wilhelm Borchardt * 1881–1888: Leopold Kronecker, Karl Weierstrass Karl Theodor Wilhelm Weierstrass (; ; 31 October 1815 � ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



MORE