Logarithmic Conformal Field Theory
   HOME
*





Logarithmic Conformal Field Theory
In theoretical physics, a logarithmic conformal field theory is a conformal field theory in which the correlators of the basic fields are allowed to be logarithmic at short distance, instead of being powers of the fields' distance. Equivalently, the dilation operator is not diagonalizable. Examples of logarithmic conformal field theories include critical percolation. In two dimensions Just like conformal field theory in general, logarithmic conformal field theory has been particularly well-studied in two dimensions. Some two-dimensional logarithmic CFTs have been solved: * The Gaberdiel–Kausch CFT at central charge c=-2, which is rational with respect to its extended symmetry algebra, namely the triplet algebra. * The GL(1, 1) Wess–Zumino–Witten model, based on the simplest non-trivial supergroup Supergroup or super group may refer to: * Supergroup (music), a music group formed by artists who are already notable or respected in their fields * Supergroup (physics), a gen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Theoretical Physics
Theoretical physics is a branch of physics that employs mathematical models and abstractions of physical objects and systems to rationalize, explain and predict natural phenomena. This is in contrast to experimental physics, which uses experimental tools to probe these phenomena. The advancement of science generally depends on the interplay between experimental studies and theory. In some cases, theoretical physics adheres to standards of mathematical rigour while giving little weight to experiments and observations.There is some debate as to whether or not theoretical physics uses mathematics to build intuition and illustrativeness to extract physical insight (especially when normal experience fails), rather than as a tool in formalizing theories. This links to the question of it using mathematics in a less formally rigorous, and more intuitive or heuristic way than, say, mathematical physics. For example, while developing special relativity, Albert Einstein was concerned wit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Conformal Field Theory
A conformal field theory (CFT) is a quantum field theory that is invariant under conformal transformations. In two dimensions, there is an infinite-dimensional algebra of local conformal transformations, and conformal field theories can sometimes be exactly solved or classified. Conformal field theory has important applications to condensed matter physics, statistical mechanics, quantum statistical mechanics, and string theory. Statistical and condensed matter systems are indeed often conformally invariant at their thermodynamic or quantum critical points. Scale invariance vs conformal invariance In quantum field theory, scale invariance is a common and natural symmetry, because any fixed point of the renormalization group is by definition scale invariant. Conformal symmetry is stronger than scale invariance, and one needs additional assumptions to argue that it should appear in nature. The basic idea behind its plausibility is that ''local'' scale invariant theories have their ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Correlation Function (quantum Field Theory)
In quantum field theory, correlation functions, often referred to as correlators or Green's functions, are vacuum expectation values of time-ordered products of field operators. They are a key object of study in quantum field theory where they can be used to calculate various observables such as S-matrix elements. Definition For a scalar field theory with a single field \phi(x) and a vacuum state , \Omega\rangle at every event (x) in spacetime, the n-point correlation function is the vacuum expectation value of the time-ordered products of n field operators in the Heisenberg picture G_n(x_1,\dots, x_n) = \langle \Omega, T\, \Omega\rangle. Here T\ is the time-ordering operator for which orders the field operators so that earlier time field operators appear to the right of later time field operators. By transforming the fields and states into the interaction picture, this is rewritten as G_n(x_1, \dots, x_n) = \frac, where , 0\rangle is the ground state of the free theo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Percolation Critical Exponents
In the context of the physical and mathematical theory of percolation, a percolation transition is characterized by a set of ''universal'' critical exponents, which describe the fractal properties of the percolating medium at large scales and sufficiently close to the transition. The exponents are universal in the sense that they only depend on the type of percolation model and on the space dimension. They are expected to not depend on microscopic details such as the lattice structure, or whether site or bond percolation is considered. This article deals with the critical exponents of random percolation. Percolating systems have a parameter p\,\! which controls the occupancy of sites or bonds in the system. At a critical value p_c\,\!, the mean cluster size goes to infinity and the percolation transition takes place. As one approaches p_c\,\!, various quantities either diverge or go to a constant value by a power law in , p - p_c, \,\!, and the exponent of that power law is the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Two-dimensional Conformal Field Theory
A two-dimensional conformal field theory is a quantum field theory on a Euclidean two-dimensional space, that is invariant under local conformal transformations. In contrast to other types of conformal field theories, two-dimensional conformal field theories have infinite-dimensional symmetry algebras. In some cases, this allows them to be solved exactly, using the conformal bootstrap method. Notable two-dimensional conformal field theories include minimal models, Liouville theory, massless free bosonic theories, Wess–Zumino–Witten models, and certain sigma models. Basic structures Geometry Two-dimensional conformal field theories (CFTs) are defined on Riemann surfaces, where local conformal maps are holomorphic functions. While a CFT might conceivably exist only on a given Riemann surface, its existence on any surface other than the sphere implies its existence on all surfaces. Given a CFT, it is indeed possible to glue two Riemann surfaces where it exists, and obtain t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Wess–Zumino–Witten Model
In theoretical physics and mathematics, a Wess–Zumino–Witten (WZW) model, also called a Wess–Zumino–Novikov–Witten model, is a type of two-dimensional conformal field theory named after Julius Wess, Bruno Zumino, Sergei Novikov and Edward Witten. A WZW model is associated to a Lie group (or supergroup), and its symmetry algebra is the affine Lie algebra built from the corresponding Lie algebra (or Lie superalgebra). By extension, the name WZW model is sometimes used for any conformal field theory whose symmetry algebra is an affine Lie algebra. Action Definition For \Sigma a Riemann surface, G a Lie group, and k a (generally complex) number, let us define the G-WZW model on \Sigma at the level k. The model is a nonlinear sigma model whose action is a functional of a field \gamma:\Sigma \to G: :S_k(\gamma)= -\frac \int_ d^2x\, \mathcal \left (\gamma^ \partial^\mu \gamma, \gamma^ \partial_\mu \gamma \right ) + 2\pi k S^(\gamma). Here, \Sigma is equipped with a flat Eu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Supergroup (physics)
The concept of supergroup is a generalization of that of group. In other words, every supergroup carries a natural group structure, but there may be more than one way to structure a given group as a supergroup. A supergroup is like a Lie group in that there is a well defined notion of smooth function defined on them. However the functions may have even and odd parts. Moreover, a supergroup has a super Lie algebra which plays a role similar to that of a Lie algebra for Lie groups in that they determine most of the representation theory and which is the starting point for classification. Details More formally, a Lie supergroup is a supermanifold ''G'' together with a multiplication morphism \mu :G \times G\rightarrow G, an inversion morphism i : G \rightarrow G and a unit morphism e: 1 \rightarrow G which makes ''G'' a group object in the category of supermanifolds. This means that, formulated as commutative diagrams, the usual associativity and inversion axioms of a group continue ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]