List Of Tumblers (small Solar System Bodies)
   HOME
*



picture info

List Of Tumblers (small Solar System Bodies)
This is a list of tumblers, minor planets, comets and natural satellites whose angular momentum vector is far from the principal axis of inertia, so that they do not rotate in a fairly constant manner with a constant period. Instead of rotating around a constant axis or around a wobbling axis, they appear to tumble (see Poinsot's ellipsoid for an explanation). For true tumbling, the three moments of inertia must be different. If two are equal, then the axis of rotation will simply precess in a circle. As of 2018, there are 3 natural satellites and 198 confirmed or likely tumblers out of a total of nearly 800,000 discovered small Solar System bodies. The data is sourced from the "Lightcurve Data Base" (LCDB). The tumbling of a body can be caused by the torque from asymmetrically emitted radiation known as the YORP effect. Note that the rotation periods given below are approximate. The rotation period is not constant for a tumbler. Natural satellites This is a list of tumbling na ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Minor Planet
According to the International Astronomical Union (IAU), a minor planet is an astronomical object in direct orbit around the Sun that is exclusively classified as neither a planet nor a comet. Before 2006, the IAU officially used the term ''minor planet'', but that year's meeting reclassified minor planets and comets into dwarf planets and small Solar System bodies (SSSBs).Press release, IAU 2006 General Assembly: Result of the IAU Resolution votes
International Astronomical Union, August 24, 2006. Accessed May 5, 2008.
Minor planets include asteroids (

picture info

Hyperion (moon)
Hyperion , also known as Saturn VII, is a moon of Saturn discovered by William Cranch Bond, his son George Phillips Bond and William Lassell in 1848. It is distinguished by its irregular shape, its chaotic rotation, and its unexplained sponge-like appearance. It was the first non-round moon to be discovered. Name The moon is named after Hyperion, the Titan god of watchfulness and observation – the elder brother of Cronus, the Greek equivalent of the Roman god Saturn. It is also designated ''Saturn VII''. The adjectival form of the name is ''Hyperionian''. Hyperion's discovery came shortly after John Herschel had suggested names for the seven previously known satellites of Saturn in his 1847 publication ''Results of Astronomical Observations made at the Cape of Good Hope''. William Lassell, who saw Hyperion two days after William Bond, had already endorsed Herschel's naming scheme and suggested the name Hyperion in accordance with it. He also beat Bond to pu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Near-Earth Object
A near-Earth object (NEO) is any small Solar System body whose orbit brings it into proximity with Earth. By convention, a Solar System body is a NEO if its closest approach to the Sun (perihelion) is less than 1.3 astronomical units (AU). If a NEO's orbit crosses the Earth's orbit, and the object is larger than across, it is considered a potentially hazardous object (PHO). Most known PHOs and NEOs are asteroids, but a small fraction are comets. There are over 30,503 known near-Earth asteroids (NEAs) and over a hundred known short-period near-Earth comets (NECs). A number of solar-orbiting meteoroids were large enough to be tracked in space before striking the Earth. It is now widely accepted that collisions in the past have had a significant role in shaping the geological and biological history of the Earth. Asteroids as small as in diameter can cause significant damage to the local environment and human populations. Larger asteroids penetrate the atmosphere to the surf ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




D-type Asteroid
D-type asteroids have a very low albedo and a featureless reddish Asteroid spectral types, spectrum. It has been suggested that they have a composition of organic-rich silicates, carbon and anhydrous silicates, possibly with water ice in their interiors. D-type asteroids are found in the outer asteroid belt and beyond; examples are 152 Atala, and 944 Hidalgo as well as the majority of Jupiter Trojan, Jupiter trojans. It has been suggested that the Tagish Lake (meteorite), Tagish Lake meteorite was a fragment from a D-type asteroid, and that the Martian moon Phobos (moon), Phobos is closely related. The Nice model suggests that D-type asteroids may have originated in the Kuiper belt. 46 D-type asteroids are known, including: 3552 Don Quixote, 944 Hidalgo, 624 Hektor, and 10199 Chariklo. Examples A list of some of the largest D-type asteroids. See also * Asteroid spectral types * Tagish Lake (meteorite) References Asteroid spectral classes ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Rogue Comet
An interstellar object is an astronomical object (such as an asteroid, a comet, or a rogue planet, but not a star) in interstellar space that is not gravitationally bound to a star. This term can also be applied to an object that is on an interstellar trajectory but is temporarily passing close to a star, such as certain asteroids and comets (including exocomets). In the latter case, the object may be called an interstellar interloper. The first interstellar objects discovered were rogue planets, planets ejected from their original stellar system (e.g., OTS 44 or Cha 110913−773444), though they are difficult to distinguish from sub-brown dwarfs, planet-mass objects that formed in interstellar space as stars do. The first interstellar object which was discovered traveling through our Solar System was 1I/ʻOumuamua in 2017. The second was 2I/Borisov in 2019. They both possess significant hyperbolic excess velocity, indicating they did not originate in the Solar System. Earlier, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


C-type Asteroid
C-type (carbonaceous) asteroids are the most common variety, forming around 75% of known asteroids. They are volatile-rich and distinguished by a very low albedo because their composition includes a large amount of carbon, in addition to rocks and minerals. Their density averages at about . They occur most frequently at the outer edge of the asteroid belt, 3.5 astronomical units (AU) from the Sun, where 80% of the asteroids are of this type, whereas only 40% of asteroids at 2 AU from the Sun are C-type. The proportion of C-types may actually be greater than this, because C-types are much darker (and therefore less detectable) than most other asteroid types except for D-types and others that are mostly at the extreme outer edge of the asteroid belt. Characteristics Asteroids of this class have spectra very similar to those of carbonaceous chondrite meteorites (types CI and CM). The latter are very close in chemical composition to the Sun and the primitive solar nebula minus h ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

103P/Hartley
Comet Hartley 2, designated as 103P/Hartley by the Minor Planet Center, is a small periodic comet with an orbital period of 6.46 years. It was discovered by Malcolm Hartley in 1986 at the Schmidt Telescope Unit, Siding Spring Observatory, Australia. Its diameter is estimated to be . Hartley 2 was the target of a flyby of the Deep Impact spacecraft, as part of the EPOXI mission, on 4 November 2010, which was able to approach within of Hartley 2 as part of its extended mission. Hartley 2 is the smallest comet which has been visited. It is the fifth comet visited by spacecraft, and the second comet visited by the Deep Impact spacecraft, which first visited comet Tempel 1 on 4 July 2005. Discovery and orbit Comet Hartley 2 is a small Jupiter-family comet having an orbital period of 6.46 years. It was discovered by Malcolm Hartley in 1986 at the Schmidt Telescope Unit, Siding Spring Observatory, Australia. It has the perihelion near the Earth's orbit at 1.05 AU from the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Asteroid Spectral Types
An asteroid spectral type is assigned to asteroids based on their emission spectrum, color, and sometimes albedo. These types are thought to correspond to an asteroid's surface composition. For small bodies that are not internally differentiated, the surface and internal compositions are presumably similar, while large bodies such as Ceres and Vesta are known to have internal structure. Over the years, there has been a number of surveys that resulted in a set of different taxonomic systems such as the Tholen, SMASS and Bus–DeMeo classifications. Taxonomic systems In 1975, astronomers Clark R. Chapman, David Morrison, and Ben Zellner developed a simple taxonomic system for asteroids based on color, albedo, and spectral shape. The three categories were labelled " C" for dark carbonaceous objects, " S" for stony (silicaceous) objects, and "U" for those that did not fit into either C or S. This basic division of asteroid spectra has since been expanded and clarified.Thomas ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

LCDB Quality Code
In astronomy, a light curve is a graph of light intensity of a celestial object or region as a function of time, typically with the magnitude of light received on the y axis and with time on the x axis. The light is usually in a particular frequency interval or band. Light curves can be periodic, as in the case of eclipsing binaries, Cepheid variables, other periodic variables, and transiting extrasolar planets, or aperiodic, like the light curve of a nova, a cataclysmic variable star, a supernova or a microlensing event or binary as observed during occultation events. The study of the light curve, together with other observations, can yield considerable information about the physical process that produces it or constrain the physical theories about it. Variable stars Graphs of the apparent magnitude of a variable star over time are commonly used to visualise and analyse their behaviour. Although the categorisation of variable star types is increasingly done from their spe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Small Solar System Bodies
A small Solar System body (SSSB) is an object in the Solar System that is neither a planet, a dwarf planet, nor a natural satellite. The term was first IAU definition of planet, defined in 2006 by the International Astronomical Union (IAU) as follows: "All other objects, except satellites, orbiting the Sun shall be referred to collectively as 'Small Solar System Bodies' ".''RESOLUTION B5 - Definition of a Planet in the Solar System''
(IAU) This encompasses all comets and all minor planets other than those that are dwarf planets. Thus SSSBs are: the comets; the classical asteroids, with the exception of the dwarf planet Ceres (dwarf planet), Ceres; the Trojan (astronomy), trojans; and the Centaur (minor planet), centaurs and trans-Neptunian objects, with the exception of the dwarf ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hydra (moon)
Hydra is a natural satellite of Pluto, with a diameter of approximately across its longest dimension. It is the second-largest moon of Pluto, being slightly larger than Nix. Hydra was discovered along with Nix by astronomers using the Hubble Space Telescope on 15 May 2005, and was named after the Hydra, the nine-headed underworld serpent in Greek mythology. By distance, Hydra is the fifth and outermost moon of Pluto, orbiting beyond Pluto's fourth moon Kerberos. Hydra has a highly reflective surface caused by the presence of water ice, similar to other Plutonian moons. Hydra's reflectivity is intermediate, in between those of Pluto and Charon. The ''New Horizons'' spacecraft imaged Pluto and its moons in July 2015 and returned multiple images of Hydra. Discovery Hydra was discovered by researchers of the Pluto Companion Search Team, consisting of Hal A. Weaver and many others involved in the ''New Horizons'' mission to Pluto, including Alan Stern and Marc W. Buie. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]