List Of Things Named After John Horton Conway
   HOME
*





List Of Things Named After John Horton Conway
This is a list of things named after the English mathematician John Horton Conway (1937–2020). * Conway algebra – an algebraic structure introduced by Paweł Traczyk and Józef H. Przytycki * Conway base 13 function – a function used as a counterexample to the converse of the intermediate value theorem * Conway chained arrow notation – a notation for expressing certain extremely large numbers * Conway circle – a geometrical construction based on extending the sides of a triangle * Conway criterion – a criterion for identifying prototiles that admit a periodic tiling * Conway group – any of the groups Co0, Co1, Co2, or Co3''Sphere packings, lattices, and groups'' (with Neil Sloane). Springer-Verlag, New York, Series: Grundlehren der mathematischen Wissenschaften, 290, * Conway group Co1 – one of the sporadic simple groups discovered by Conway in 1968 * Conway group Co2 – one of the sporadic simple groups discovered by Conway in 1968 * Conway group Co3 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

John Horton Conway
John Horton Conway (26 December 1937 – 11 April 2020) was an English mathematician active in the theory of finite groups, knot theory, number theory, combinatorial game theory and coding theory. He also made contributions to many branches of recreational mathematics, most notably the invention of the cellular automaton called the Game of Life. Born and raised in Liverpool, Conway spent the first half of his career at the University of Cambridge before moving to the United States, where he held the John von Neumann Professorship at Princeton University for the rest of his career. On 11 April 2020, at age 82, he died of complications from COVID-19. Early life and education Conway was born on 26 December 1937 in Liverpool, the son of Cyril Horton Conway and Agnes Boyce. He became interested in mathematics at a very early age. By the time he was 11, his ambition was to become a mathematician. After leaving sixth form, he studied mathematics at Gonville and Caius College, Camb ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Sporadic Simple Group
In mathematics, a sporadic group is one of the 26 exceptional groups found in the classification of finite simple groups. A simple group is a group ''G'' that does not have any normal subgroups except for the trivial group and ''G'' itself. The classification theorem states that the list of finite simple groups consists of 18 countably infinite plus 26 exceptions that do not follow such a systematic pattern. These 26 exceptions are the sporadic groups. They are also known as the sporadic simple groups, or the sporadic finite groups. Because it is not strictly a group of Lie type, the Tits group is sometimes regarded as a sporadic group, in which case there would be 27 sporadic groups. The monster group is the largest of the sporadic groups, and all but six of the other sporadic groups are subquotients of it. Names Five of the sporadic groups were discovered by Mathieu in the 1860s and the other 21 were found between 1965 and 1975. Several of these groups were predicted to exis ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


MathOverflow
MathOverflow is a mathematics question-and-answer (Q&A) website, which serves as an online community of mathematicians. It allows users to ask questions, submit answers, and rate both, all while getting merit points for their activities. It is a part of the Stack Exchange Network. It is primarily for asking questions on mathematics research – i.e. related to unsolved problems and the extension of knowledge of mathematics into areas that are not yet known – and does not welcome requests from non-mathematicians for instruction, for example homework exercises. It does welcome various questions on other topics that might normally be discussed among mathematicians, for example about publishing, refereeing, advising, getting tenure, etc. It is generally inhospitable to questions perceived as tendentious or argumentative. Origin and history The website was started by Berkeley graduate students and postdocs Anton Geraschenko, David Zureick-Brown, and Scott Morrison on 28 Septe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Conway's 99-graph Problem
In graph theory, Conway's 99-graph problem is an unsolved problem asking whether there exists an undirected graph with 99 vertices, in which each two adjacent vertices have exactly one common neighbor, and in which each two non-adjacent vertices have exactly two common neighbors. Equivalently, every edge should be part of a unique triangle and every non-adjacent pair should be one of the two diagonals of a unique 4-cycle. John Horton Conway offered a $1000 prize for its solution. Properties If such a graph exists, it would necessarily be a locally linear graph and a strongly regular graph with parameters (99,14,1,2). The first, third, and fourth parameters encode the statement of the problem: the graph should have 99 vertices, every pair of adjacent vertices should have 1 common neighbor, and every pair of non-adjacent vertices should have 2 common neighbors. The second parameter means that the graph is a regular graph with 14 edges per vertex. If this graph exists, it cannot hav ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Conway Triangle Notation
In geometry, the Conway triangle notation, named after John Horton Conway, allows trigonometric functions of a triangle to be managed algebraically. Given a reference triangle whose sides are ''a'', ''b'' and ''c'' and whose corresponding internal angles are ''A'', ''B'', and ''C'' then the Conway triangle notation is simply represented as follows: : S = bc \sin A = ac \sin B = ab \sin C \, where ''S'' = 2 × area of reference triangle and : S_\varphi = S \cot \varphi . \, in particular : S_A = S \cot A = bc \cos A= \frac \, : S_B = S \cot B = ac \cos B= \frac \, : S_C = S \cot C = ab \cos C= \frac \, : S_\omega = S \cot \omega = \frac \,      where \omega \, is the Brocard angle. The law of cosines is used: a^2=b^2+c^2-2bc \cos A. : S_ = S \cot = S \frac \, : S_ = \frac \quad\quad S_ = S_\varphi + \sqrt \,    for values of   \varphi   where   0 < \varphi < \pi \, : S_ = \frac \quad\quad S_ = \ ...
[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Transversality (mathematics)
In mathematics, transversality is a notion that describes how spaces can intersect; transversality can be seen as the "opposite" of tangency, and plays a role in general position. It formalizes the idea of a generic intersection in differential topology. It is defined by considering the linearizations of the intersecting spaces at the points of intersection. Definition Two submanifolds of a given finite-dimensional smooth manifold are said to intersect transversally if at every point of intersection, their separate tangent spaces at that point together generate the tangent space of the ambient manifold at that point. Manifolds that do not intersect are vacuously transverse. If the manifolds are of complementary dimension (i.e., their dimensions add up to the dimension of the ambient space), the condition means that the tangent space to the ambient manifold is the direct sum of the two smaller tangent spaces. If an intersection is transverse, then the intersection will be a su ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ball (mathematics)
In mathematics, a ball is the solid figure bounded by a ''sphere''; it is also called a solid sphere. It may be a closed ball (including the boundary points that constitute the sphere) or an open ball (excluding them). These concepts are defined not only in three-dimensional Euclidean space but also for lower and higher dimensions, and for metric spaces in general. A ''ball'' in dimensions is called a hyperball or -ball and is bounded by a ''hypersphere'' or ()-sphere. Thus, for example, a ball in the Euclidean plane is the same thing as a disk, the area bounded by a circle. In Euclidean 3-space, a ball is taken to be the volume bounded by a 2-dimensional sphere. In a one-dimensional space, a ball is a line segment. In other contexts, such as in Euclidean geometry and informal use, ''sphere'' is sometimes used to mean ''ball''. In the field of topology the closed n-dimensional ball is often denoted as B^n or D^n while the open n-dimensional ball is \operatorname B^n or \ope ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

N-sphere
In mathematics, an -sphere or a hypersphere is a topological space that is homeomorphic to a ''standard'' -''sphere'', which is the set of points in -dimensional Euclidean space that are situated at a constant distance from a fixed point, called the ''center''. It is the generalization of an ordinary sphere in the ordinary three-dimensional space. The "radius" of a sphere is the constant distance of its points to the center. When the sphere has unit radius, it is usual to call it the unit -sphere or simply the -sphere for brevity. In terms of the standard norm, the -sphere is defined as : S^n = \left\ , and an -sphere of radius can be defined as : S^n(r) = \left\ . The dimension of -sphere is , and must not be confused with the dimension of the Euclidean space in which it is naturally embedded. An -sphere is the surface or boundary of an -dimensional ball. In particular: *the pair of points at the ends of a (one-dimensional) line segment is a 0-sphere, *a circle, which i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Conway Sphere
In mathematical knot theory, a Conway sphere, named after John Horton Conway, is a 2-sphere intersecting a given knot or link in a 3-manifold transversely in four points. In a knot diagram, a Conway sphere can be represented by a simple closed curve crossing four points of the knot, the cross-section of the sphere; such a curve does not always exist for an arbitrary knot diagram of a knot with a Conway sphere, but it is always possible to choose a diagram for the knot in which the sphere can be depicted in this way. A Conway sphere is ''essential'' if it is incompressible in the knot complement In mathematics, the knot complement of a tame knot ''K'' is the space where the knot is not. If a knot is embedded in the 3-sphere, then the complement is the 3-sphere minus the space near the knot. To make this precise, suppose that ''K'' is a .... Sometimes, this condition is included in the definition of Conway spheres. References Knot theory John Horton Conway {{knotthe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Conway Puzzle
Conway's puzzle, or blocks-in-a-box, is a packing problem using rectangular blocks, named after its inventor, mathematician John Conway. It calls for packing thirteen 1 × 2 × 4 blocks, one 2 × 2 × 2 block, one 1 × 2 × 2 block, and three 1 × 1 × 3 blocks into a 5 × 5 × 5 box. Solution The solution of the Conway puzzle is straightforward once one realizes, based on parity considerations, that the three 1 × 1 × 3 blocks need to be placed so that precisely one of them appears in each 5 × 5 × 1 slice of the cube.Elwyn R. Berlekamp, John H. Conway and Richard K. Guy: winning ways for your mathematical plays, 2nd ed, vol. 4, 2004. This is analogous to similar insight that facilitates the solution of the simpler Slothouber–Graatsma puzzle. See also * Soma cube The Soma cube is a solid dissection puzzle invented by Danish polymath Piet Hein in 1933 during a lecture on quantum mechanics conducted by Werner Heisenberg. Seven pieces made out of unit cubes must be as ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Conway Polynomial (finite Fields)
In mathematics, the Conway polynomial ''C''''p'',''n'' for the finite field F''p''''n'' is a particular irreducible polynomial of degree ''n'' over F''p'' that can be used to define a standard representation of F''p''''n'' as a splitting field of ''C''''p'',''n''. Conway polynomials were named after John H. Conway by Richard A. Parker, who was the first to define them and compute examples. Conway polynomials satisfy a certain compatibility condition that had been proposed by Conway between the representation of a field and the representations of its subfields. They are important in computer algebra where they provide portability among different mathematical databases and computer algebra systems. Since Conway polynomials are expensive to compute, they must be stored to be used in practice. Databases of Conway polynomials are available in the computer algebra systems GAP computer algebra system, GAP, Macaulay2, Magma computer algebra system, Magma, SageMath, and at the web site of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Conway Polyhedron Notation
In geometry, Conway polyhedron notation, invented by John Horton Conway and promoted by George W. Hart, is used to describe polyhedra based on a seed polyhedron modified by various prefix operations. Conway and Hart extended the idea of using operators, like truncation as defined by Kepler, to build related polyhedra of the same symmetry. For example, represents a truncated cube, and , parsed as , is ( topologically) a truncated cuboctahedron. The simplest operator dual swaps vertex and face elements; e.g., a dual cube is an octahedron: . Applied in a series, these operators allow many higher order polyhedra to be generated. Conway defined the operators (ambo), (bevel), ( dual), (expand), (gyro), (join), (kis), (meta), (ortho), (snub), and (truncate), while Hart added ( reflect) and (propellor). Later implementations named further operators, sometimes referred to as "extended" operators. Conway's basic operations are sufficient to generate the Archimedean and Catal ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]