List Of Things Named After Eugene Wigner
   HOME
*





List Of Things Named After Eugene Wigner
The following is a list of things named after Hungarian physicist E. P. Wigner. Physics * Bloch–Wigner function * Breit–Wigner distribution (other) **Relativistic Breit–Wigner distribution *Bargmann–Wigner equations * Jordan–Wigner transformation *Newton–Wigner localization * Polynomial Wigner–Ville distribution *Thomas–Wigner rotation *Von Neumann–Wigner interpretation * Von Neumann–Wigner theorem *Wigner 3-j symbols * Wigner's 6-j symbols * Wigner's 9-j symbols * Wigner–Araki–Yanase theorem * Wigner–Yanase–Dyson conjecture *Wigner–Eckart theorem *Wigner–Inonu contraction *Wigner–Seitz cell *Wigner–Seitz radius *Wigner–Weyl transform *Wigner–Wilkins spectrum * Wigner's classification * * Wigner's friend * Wigner's theorem *Wigner crystal * Wigner D-matrix *Wigner effect *Wigner energy * Wigner lattice * Wigner poisoning, Xe-135 "poisoning" in nuclear reactors poisoning. * Wigner rotation * Wigner-Witmer correlat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Eugene Wigner
Eugene Paul "E. P." Wigner ( hu, Wigner Jenő Pál, ; November 17, 1902 – January 1, 1995) was a Hungarian-American theoretical physicist who also contributed to mathematical physics. He received the Nobel Prize in Physics in 1963 "for his contributions to the theory of the atomic nucleus and the elementary particles, particularly through the discovery and application of fundamental symmetry principles". A graduate of the Technical University of Berlin, Wigner worked as an assistant to Karl Weissenberg and Richard Becker at the Kaiser Wilhelm Institute in Berlin, and David Hilbert at the University of Göttingen. Wigner and Hermann Weyl were responsible for introducing group theory into physics, particularly the theory of symmetry in physics. Along the way he performed ground-breaking work in pure mathematics, in which he authored a number of mathematical theorems. In particular, Wigner's theorem is a cornerstone in the mathematical formulation of quantum mechanics. He is also ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Wigner–Inonu Contraction
In theoretical physics, Eugene Wigner and Erdal İnönü have discussed the possibility to obtain from a given Lie group a different (non-isomorphic) Lie group by a group contraction with respect to a continuous subgroup of it. That amounts to a limiting operation on a parameter of the Lie algebra, altering the structure constants of this Lie algebra in a nontrivial singular manner, under suitable circumstances. For example, the Lie algebra of the 3D rotation group , , etc., may be rewritten by a change of variables , , , as : . The contraction limit trivializes the first commutator and thus yields the non-isomorphic algebra of the plane Euclidean group, . (This is isomorphic to the cylindrical group, describing motions of a point on the surface of a cylinder. It is the little group, or stabilizer subgroup, of null four-vectors in Minkowski space.) Specifically, the translation generators , now generate the Abelian normal subgroup of (cf. Group extension), the parabolic Lor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Wigner Lattice
A Wigner crystal is the solid (crystalline) phase of electrons first predicted by Eugene Wigner in 1934. A gas of electrons moving in a uniform, inert, neutralizing background (i.e. Jellium Model) will crystallize and form a lattice if the electron density is less than a critical value. This is because the potential energy dominates the kinetic energy at low densities, so the detailed spatial arrangement of the electrons becomes important. To minimize the potential energy, the electrons form a bcc (body-centered cubic) lattice in 3 D, a triangular lattice in 2D and an evenly spaced lattice in 1D. Most experimentally observed Wigner clusters exist due to the presence of the external confinement, i.e. external potential trap. As a consequence, deviations from the b.c.c or triangular lattice are observed. A crystalline state of the 2D electron gas can also be realized by applying a sufficiently strong magnetic field. However, it is still not clear whether it is the Wigner crystalli ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Wigner Energy
Eugene Paul "E. P." Wigner ( hu, Wigner Jenő Pál, ; November 17, 1902 – January 1, 1995) was a Hungarian-American theoretical physicist who also contributed to mathematical physics. He received the Nobel Prize in Physics in 1963 "for his contributions to the theory of the atomic nucleus and the elementary particles, particularly through the discovery and application of fundamental symmetry principles". A graduate of the Technical University of Berlin, Wigner worked as an assistant to Karl Weissenberg and Richard Becker at the Kaiser Wilhelm Institute in Berlin, and David Hilbert at the University of Göttingen. Wigner and Hermann Weyl were responsible for introducing group theory into physics, particularly the theory of symmetry in physics. Along the way he performed ground-breaking work in pure mathematics, in which he authored a number of mathematical theorems. In particular, Wigner's theorem is a cornerstone in the mathematical formulation of quantum mechanics. He is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Wigner Effect
The Wigner effect (named for its discoverer, Eugene Wigner), also known as the discomposition effect or Wigner's disease, is the displacement of atoms in a solid caused by neutron radiation. Any solid can display the Wigner effect. The effect is of most concern in neutron moderators, such as graphite, intended to reduce the speed of Neutron temperature#Fast, fast neutrons, thereby turning them into Neutron temperature, thermal neutrons capable of sustaining a nuclear chain reaction involving uranium-235. Explanation To create the Wigner effect, neutrons that collide with the atoms in a crystal structure must have enough energy to displace them from the lattice. This amount (threshold displacement energy) is approximately 25 Electronvolt, eV. A neutron's energy can vary widely, but it is not uncommon to have energies up to and exceeding 10 MeV (10,000,000 eV) in the centre of a nuclear reactor. A neutron with a significant amount of energy will create a Collision cascade, displa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Wigner D-matrix
The Wigner D-matrix is a unitary matrix in an irreducible representation of the groups SU(2) and SO(3). It was introduced in 1927 by Eugene Wigner, and plays a fundamental role in the quantum mechanical theory of angular momentum. The complex conjugate of the D-matrix is an eigenfunction of the Hamiltonian of spherical and symmetric rigid rotors. The letter stands for ''Darstellung'', which means "representation" in German. Definition of the Wigner D-matrix Let be generators of the Lie algebra of SU(2) and SO(3). In quantum mechanics, these three operators are the components of a vector operator known as ''angular momentum''. Examples are the angular momentum of an electron in an atom, electronic spin, and the angular momentum of a rigid rotor. In all cases, the three operators satisfy the following commutation relations, : _x,J_y= i J_z,\quad _z,J_x= i J_y,\quad _y,J_z= i J_x, where ''i'' is the purely imaginary number and Planck's constant has been set equal to one. The ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Wigner Crystal
A Wigner crystal is the solid (crystalline) phase of electrons first predicted by Eugene Wigner in 1934. A gas of electrons moving in a uniform, inert, neutralizing background (i.e. Jellium Model) will crystallize and form a lattice if the electron density is less than a critical value. This is because the potential energy dominates the kinetic energy at low densities, so the detailed spatial arrangement of the electrons becomes important. To minimize the potential energy, the electrons form a bcc (body-centered cubic) lattice in 3 D, a triangular lattice in 2D and an evenly spaced lattice in 1D. Most experimentally observed Wigner clusters exist due to the presence of the external confinement, i.e. external potential trap. As a consequence, deviations from the b.c.c or triangular lattice are observed. A crystalline state of the 2D electron gas can also be realized by applying a sufficiently strong magnetic field. However, it is still not clear whether it is the Wigner crystalli ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Wigner's Theorem
Wigner's theorem, proved by Eugene Wigner in 1931, is a cornerstone of the mathematical formulation of quantum mechanics. The theorem specifies how physical symmetries such as rotations, translations, and CPT are represented on the Hilbert space of states. The physical states in a quantum theory are represented by unit vectors in Hilbert space up to a phase factor, i.e. by the complex line or ''ray'' the vector spans. In addition, by the Born rule the absolute value of the unit vectors inner product, or equivalently the cosine squared of the angle between the lines the vectors span, corresponds to the transition probability. Ray space, in mathematics known as projective Hilbert space, is the space of all unit vectors in Hilbert space up to the equivalence relation of differing by a phase factor. By Wigner's theorem, any transformation of ray space that preserves the absolute value of the inner products can be represented by a unitary or antiunitary transformation of Hilbert spa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Wigner's Friend
Wigner's friend is a thought experiment in theoretical quantum physics, first conceived by the physicist Eugene Wigner in 1961, Reprinted in and further developed by David Deutsch in 1985. The scenario involves an indirect observation of a quantum measurement: An observer W observes another observer F who performs a quantum measurement on a physical system. The two observers then formulate a statement about the physical system's state after the measurement according to the laws of quantum theory. However, in most of the interpretations of quantum mechanics, the resulting statements of the two observers contradict each other. This reflects a seeming incompatibility of two laws in quantum theory: the deterministic and continuous time evolution of the state of a closed system and the nondeterministic, discontinuous collapse of the state of a system upon measurement. Wigner's friend is therefore directly linked to the measurement problem in quantum mechanics with its famous Schrödinger ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Wigner Quasi-probability Distribution
The Wigner quasiprobability distribution (also called the Wigner function or the Wigner–Ville distribution, after Eugene Wigner and :fr:Jean Ville, Jean-André Ville) is a quasiprobability distribution. It was introduced by Eugene Wigner in 1932 to study quantum corrections to classical statistical mechanics. The goal was to link the wavefunction that appears in Schrödinger's equation to a probability distribution in phase space. It is a generating function for all spatial autocorrelation functions of a given quantum-mechanical wavefunction . Thus, it maps on the quantum density matrix in the map between real phase-space functions and Hermitian operators introduced by Hermann Weyl in 1927, in a context related to Group representation, representation theory in mathematics (see Weyl quantization). In effect, it is the Wigner–Weyl transform of the density matrix, so the realization of that operator in phase space. It was later rederived by Jean Ville in 1948 as a quadratic (in s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Wigner's Classification
In mathematics and theoretical physics, Wigner's classification is a classification of the nonnegative ~ (~E \ge 0~)~ energy irreducible unitary representations of the Poincaré group which have either finite or zero mass eigenvalues. (Since this group is noncompact, these unitary representations are infinite-dimensional.) It was introduced by Eugene Wigner, to classify particles and fields in physics—see the article particle physics and representation theory. It relies on the stabilizer subgroups of that group, dubbed the Wigner little groups of various mass states. The Casimir invariants of the Poincaré group are ~ C_1 = P^\mu \, P_\mu ~ , (Einstein notation) where is the 4-momentum operator, and ~ C_2 = W^\alpha\, W_\alpha ~, where is the Pauli–Lubanski pseudovector. The eigenvalues of these operators serve to label the representations. The first is associated with mass-squared and the second with helicity or spin. The physically relevant representations may thus ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Wigner–Wilkins Spectrum
Jesse Ernest Wilkins Jr. (November 27, 1923 – May 1, 2011) was an African American nuclear scientist, mechanical engineer and mathematician. A child prodigy, he attended the University of Chicago at the age of 13, becoming its youngest ever student.Mathematicians of the African DiasporaJ. Ernest Wilkins Jr. Department of Mathematics, University of Buffalo. Retrieved online May 7, 2011.U.S. Department Of EnergyBlack Contributors to Science and Energy Technology (Biographical sketch: Ernest Wilkins) U.S. Department Of Energy, Office of Public Affairs, U.S.Government Printing Office, Washington, D.C., 1979, pp. 14–15, DOE/OPA-0035(79) His graduation at a young age resulted in him being hailed as "the Negro Genius" in the national media. Wilkins and Eugene Wigner co-developed the Wigner-Wilkins approach for estimating the distribution of neutron energies within nuclear reactors, which is the basis for how all nuclear reactors are designed. Wilkins later went on to become the Pr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]