List Of Rules Of Inference
   HOME





List Of Rules Of Inference
This is a list of rules of inference, logical laws that relate to mathematical formulae. Introduction Rules of inference are syntactical transform rules which one can use to infer a conclusion from a premise to create an argument. A set of rules can be used to infer any valid conclusion if it is complete, while never inferring an invalid conclusion, if it is sound. A sound and complete set of rules need not include every rule in the following list, as many of the rules are redundant, and can be proven with the other rules. ''Discharge rules'' permit inference from a subderivation based on a temporary assumption. Below, the notation : \varphi \vdash \psi indicates such a subderivation from the temporary assumption \varphi to \psi. Rules for propositional calculus Rules for negations ;Reductio ad absurdum (or '' Negation Introduction''): : \varphi \vdash \psi : \underline : \lnot \varphi ;Reductio ad absurdum (related to the law of excluded middle): : \lnot \varphi \vdash \ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Rule Of Inference
Rules of inference are ways of deriving conclusions from premises. They are integral parts of formal logic, serving as norms of the Logical form, logical structure of Validity (logic), valid arguments. If an argument with true premises follows a rule of inference then the conclusion cannot be false. ''Modus ponens'', an influential rule of inference, connects two premises of the form "if P then Q" and "P" to the conclusion "Q", as in the argument "If it rains, then the ground is wet. It rains. Therefore, the ground is wet." There are many other rules of inference for different patterns of valid arguments, such as ''modus tollens'', disjunctive syllogism, constructive dilemma, and existential generalization. Rules of inference include rules of implication, which operate only in one direction from premises to conclusions, and rules of replacement, which state that two expressions are equivalent and can be freely swapped. Rules of inference contrast with formal fallaciesinvalid argu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Proof By Exhaustion
Proof by exhaustion, also known as proof by cases, proof by case analysis, complete induction or the brute force method, is a method of mathematical proof in which the statement to be proved is split into a finite number of cases or sets of equivalent cases, and where each type of case is checked to see if the proposition in question holds. This is a method of direct proof. A proof by exhaustion typically contains two stages: # A proof that the set of cases is exhaustive; i.e., that each instance of the statement to be proved matches the conditions of (at least) one of the cases. # A proof of each of the cases. The prevalence of digital computers has greatly increased the convenience of using the method of exhaustion (e.g., the first computer-assisted proof of four color theorem in 1976), though such approaches can also be challenged on the basis of mathematical elegance. Expert systems can be used to arrive at answers to many of the questions posed to them. In theory, the p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Monotonicity Of Entailment
Monotonicity of entailment is a property of many logical systems such that if a sentence follows deductively from a given set of sentences then it also follows deductively from any superset of those sentences. A corollary is that if a given argument is deductively valid, it cannot become invalid by the addition of extra premises. Logical systems with this property are called monotonic logics in order to differentiate them from non-monotonic logics. Classical logic and intuitionistic logic are examples of monotonic logics. Weakening rule Monotonicity may be stated formally as a rule called weakening, or sometimes thinning. A system is monotonic if and only if the rule is admissible. The weakening rule may be expressed as a natural deduction sequent: :\frac This can be read as saying that if, on the basis of a set of assumptions \Gamma, one can prove C, then by adding an assumption A, one can still prove C. Example The following argument is valid: "All men are mortal. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Linear Logic
Linear logic is a substructural logic proposed by French logician Jean-Yves Girard as a refinement of classical and intuitionistic logic, joining the dualities of the former with many of the constructive properties of the latter. Although the logic has also been studied for its own sake, more broadly, ideas from linear logic have been influential in fields such as programming languages, game semantics, and quantum physics (because linear logic can be seen as the logic of quantum information theory), as well as linguistics, particularly because of its emphasis on resource-boundedness, duality, and interaction. Linear logic lends itself to many different presentations, explanations, and intuitions. Proof-theoretically, it derives from an analysis of classical sequent calculus in which uses of (the structural rules) contraction and weakening are carefully controlled. Operationally, this means that logical deduction is no longer merely about an ever-expanding collection of pe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Substructural Logic
In logic, a substructural logic is a logic lacking one of the usual structural rules (e.g. of classical and intuitionistic logic), such as weakening, contraction, exchange or associativity. Two of the more significant substructural logics are relevance logic and linear logic. Examples In a sequent calculus, one writes each line of a proof as :\Gamma\vdash\Sigma. Here the structural rules are rules for rewriting the LHS of the sequent, denoted Γ, initially conceived of as a string (sequence) of propositions. The standard interpretation of this string is as conjunction: we expect to read :\mathcal A,\mathcal B \vdash\mathcal C as the sequent notation for :(''A'' and ''B'') implies ''C''. Here we are taking the RHS Σ to be a single proposition ''C'' (which is the intuitionistic style of sequent); but everything applies equally to the general case, since all the manipulations are taking place to the left of the turnstile symbol \vdash. Since conjunction is a c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Existential Instantiation
In predicate logic, existential instantiation (also called existential elimination) is a rule of inference which says that, given a formula of the form (\exists x) \phi(x), one may infer \phi(c) for a new constant symbol ''c''. The rule has the restrictions that the constant ''c'' introduced by the rule must be a new term that has not occurred earlier in the proof, and it also must not occur in the conclusion of the proof. It is also necessary that every instance of x which is bound to \exists x must be uniformly replaced by ''c''. This is implied by the notation P\left(\right), but its explicit statement is often left out of explanations. In one formal notation, the rule may be denoted by :\exists x P \left(\right) \implies P \left(\right) where ''a'' is a new constant symbol that has not appeared in the proof. See also * Existential fallacy * Universal instantiation In predicate logic, universal instantiation (UI; also called universal specification or universal eliminat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Existential Generalization
In predicate logic, existential generalization (also known as existential introduction, ∃I) is a valid rule of inference that allows one to move from a specific statement, or one instance, to a quantified generalized statement, or existential proposition. In first-order logic, it is often used as a rule for the existential quantifier (\exists) in formal proofs. Example: "Rover loves to wag his tail. Therefore, something loves to wag its tail." Example: "Alice made herself a cup of tea. Therefore, Alice made someone a cup of tea." Example: "Alice made herself a cup of tea. Therefore, someone made someone a cup of tea." In the Fitch-style calculus: : Q(a) \to\ \exists\, Q(x) , where Q(a) is obtained from Q(x) by replacing all its free occurrences of x (or some of them) by a. Quine According to Willard Van Orman Quine, universal instantiation In predicate logic, universal instantiation (UI; also called universal specification or universal elimination, and sometimes ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Universal Instantiation
In predicate logic, universal instantiation (UI; also called universal specification or universal elimination, and sometimes confused with '' dictum de omni'') is a valid rule of inference from a truth about each member of a class of individuals to the truth about a particular individual of that class. It is generally given as a quantification rule for the universal quantifier but it can also be encoded in an axiom schema. It is one of the basic principles used in quantification theory. Example: "All dogs are mammals. Fido is a dog. Therefore Fido is a mammal." Formally, the rule as an axiom schema is given as : \forall x \, A \Rightarrow A\, for every formula ''A'' and every term ''t'', where A\ is the result of substituting ''t'' for each ''free'' occurrence of ''x'' in ''A''. \, A\ is an instance of \forall x \, A. And as a rule of inference it is :from \vdash \forall x A infer \vdash A \ . Irving Copi noted that universal instantiation "... follows from variants of ru ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Universal Generalization
In predicate logic, generalization (also universal generalization, universal introduction,Moore and Parker GEN, UG) is a valid inference rule. It states that if \vdash \!P(x) has been derived, then \vdash \!\forall x \, P(x) can be derived. Generalization with hypotheses The full generalization rule allows for hypotheses to the left of the turnstile, but with restrictions. Assume \Gamma is a set of formulas, \varphi a formula, and \Gamma \vdash \varphi(y) has been derived. The generalization rule states that \Gamma \vdash \forall x \, \varphi(x) can be derived if y is not mentioned in \Gamma and x does not occur in \varphi. These restrictions are necessary for soundness. Without the first restriction, one could conclude \forall x P(x) from the hypothesis P(y). Without the second restriction, one could make the following deduction: #\exists z \, \exists w \, ( z \not = w) (Hypothesis) #\exists w \, (y \not = w) (Existential instantiation) #y \not = x (Existential instantiat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

First-order Logic
First-order logic, also called predicate logic, predicate calculus, or quantificational logic, is a collection of formal systems used in mathematics, philosophy, linguistics, and computer science. First-order logic uses quantified variables over non-logical objects, and allows the use of sentences that contain variables. Rather than propositions such as "all humans are mortal", in first-order logic one can have expressions in the form "for all ''x'', if ''x'' is a human, then ''x'' is mortal", where "for all ''x"'' is a quantifier, ''x'' is a variable, and "... ''is a human''" and "... ''is mortal''" are predicates. This distinguishes it from propositional logic, which does not use quantifiers or relations; in this sense, propositional logic is the foundation of first-order logic. A theory about a topic, such as set theory, a theory for groups,A. Tarski, ''Undecidable Theories'' (1953), p. 77. Studies in Logic and the Foundation of Mathematics, North-Holland or a formal theory o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Biconditional Elimination
Biconditional elimination is the name of two valid rules of inference of propositional logic. It allows for one to infer a conditional from a biconditional. If P \leftrightarrow Q is true, then one may infer that P \to Q is true, and also that Q \to P is true. For example, if it's true that I'm breathing if and only if I'm alive, then it's true that if I'm breathing, I'm alive; likewise, it's true that if I'm alive, I'm breathing. The rules can be stated formally as: :\frac and :\frac where the rule is that wherever an instance of "P \leftrightarrow Q" appears on a line of a proof, either "P \to Q" or "Q \to P" can be placed on a subsequent line. Formal notation The ''biconditional elimination'' rule may be written in sequent notation: :(P \leftrightarrow Q) \vdash (P \to Q) and :(P \leftrightarrow Q) \vdash (Q \to P) where \vdash is a metalogical symbol meaning that P \to Q, in the first case, and Q \to P in the other are syntactic consequences of P \leftrightarrow Q in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Biconditional Introduction
In propositional logic, biconditional introductionCopi and Cohen is a valid rule of inference. It allows for one to infer a biconditional from two conditional statements. The rule makes it possible to introduce a biconditional statement into a logical proof. If P \to Q is true, and if Q \to P is true, then one may infer that P \leftrightarrow Q is true. For example, from the statements "if I'm breathing, then I'm alive" and "if I'm alive, then I'm breathing", it can be inferred that "I'm breathing if and only if I'm alive". Biconditional introduction is the converse of biconditional elimination. The rule can be stated formally as: :\frac where the rule is that wherever instances of "P \to Q" and "Q \to P" appear on lines of a proof, "P \leftrightarrow Q" can validly be placed on a subsequent line. Formal notation The ''biconditional introduction'' rule may be written in sequent notation: :(P \to Q), (Q \to P) \vdash (P \leftrightarrow Q) where \vdash is a metalogical sy ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]