List Of Lemmas
   HOME
*





List Of Lemmas
This following is a list of lemmas (or, "lemmata", i.e. minor theorems, or sometimes intermediate technical results factored out of proofs). See also list of axioms, list of theorems and list of conjectures. {{Expand list, date=August 2008 * Abel's lemma (''mathematical series'') *Abhyankar's lemma (''algebraic geometry'') * Archimedes's lemmas (''euclidean geometry'') *Artin–Rees lemma (''commutative algebra'') * Aubin–Lions lemma * Barbalat's lemma (''dynamical systems'') *Berge's lemma (''graph theory'') * Bézout's lemma (''number theory'') *Bhaskara's lemma (''Diophantine equations'') *Borel's lemma (''partial differential equations'') *Borel–Cantelli lemma (''probability theory'') *Bramble–Hilbert lemma (''numerical analysis'') *Burnside's lemma ''also known as the Cauchy–Frobenius lemma'' (''group theory'') *Céa's lemma (''numerical analysis'') *Closed map lemma (''topology'') *Cotlar–Stein lemma (''functional analysis'') * Cousin's lemma (''integrals'') * Cover ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lemma (mathematics)
In mathematics, informal logic and argument mapping, a lemma (plural lemmas or lemmata) is a generally minor, proven proposition which is used as a stepping stone to a larger result. For that reason, it is also known as a "helping theorem" or an "auxiliary theorem". In many cases, a lemma derives its importance from the theorem it aims to prove; however, a lemma can also turn out to be more important than originally thought. The word "lemma" derives from the Ancient Greek ("anything which is received", such as a gift, profit, or a bribe). Comparison with theorem There is no formal distinction between a lemma and a theorem, only one of intention (see Theorem terminology). However, a lemma can be considered a minor result whose sole purpose is to help prove a more substantial theorem – a step in the direction of proof. Well-known lemmas A good stepping stone can lead to many others. Some powerful results in mathematics are known as lemmas, first named for their originally min ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Graph Theory
In mathematics, graph theory is the study of ''graphs'', which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of '' vertices'' (also called ''nodes'' or ''points'') which are connected by '' edges'' (also called ''links'' or ''lines''). A distinction is made between undirected graphs, where edges link two vertices symmetrically, and directed graphs, where edges link two vertices asymmetrically. Graphs are one of the principal objects of study in discrete mathematics. Definitions Definitions in graph theory vary. The following are some of the more basic ways of defining graphs and related mathematical structures. Graph In one restricted but very common sense of the term, a graph is an ordered pair G=(V,E) comprising: * V, a set of vertices (also called nodes or points); * E \subseteq \, a set of edges (also called links or lines), which are unordered pairs of vertices (that is, an edge is associated with t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Céa's Lemma
Céa's lemma is a lemma in mathematics. Introduced by Jean Céa in his Ph.D. dissertation, it is an important tool for proving error estimates for the finite element method applied to elliptic partial differential equations. Lemma statement Let V be a real Hilbert space with the norm \, \cdot\, . Let a:V\times V\to \mathbb R be a bilinear form with the properties * , a(v, w), \le \gamma \, v\, \,\, w\, for some constant \gamma>0 and all v, w in V ( continuity) * a(v, v) \ge \alpha \, v\, ^2 for some constant \alpha>0 and all v in V ( coercivity or V-ellipticity). Let L:V\to \mathbb R be a bounded linear operator. Consider the problem of finding an element u in V such that : a(u, v)=L(v) for all v in V. Consider the same problem on a finite-dimensional subspace V_h of V, so, u_h in V_h satisfies : a(u_h, v)=L(v) for all v in V_h. By the Lax–Milgram theorem, each of these problems has exactly one solution. Céa's lemma states that : \, u-u_h\, \le \frac\, u-v\, for ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Group Theory
In abstract algebra, group theory studies the algebraic structures known as group (mathematics), groups. The concept of a group is central to abstract algebra: other well-known algebraic structures, such as ring (mathematics), rings, field (mathematics), fields, and vector spaces, can all be seen as groups endowed with additional operation (mathematics), operations and axioms. Groups recur throughout mathematics, and the methods of group theory have influenced many parts of algebra. Linear algebraic groups and Lie groups are two branches of group theory that have experienced advances and have become subject areas in their own right. Various physical systems, such as crystals and the hydrogen atom, and Standard Model, three of the four known fundamental forces in the universe, may be modelled by symmetry groups. Thus group theory and the closely related representation theory have many important applications in physics, chemistry, and materials science. Group theory is also ce ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Burnside's Lemma
Burnside's lemma, sometimes also called Burnside's counting theorem, the Cauchy–Frobenius lemma, the orbit-counting theorem, or the Lemma that is not Burnside's, is a result in group theory that is often useful in taking account of symmetry when counting mathematical objects. Its various eponyms are based on William Burnside, George Pólya, Augustin Louis Cauchy, and Ferdinand Georg Frobenius. The result is not due to Burnside himself, who merely quotes it in his book 'On the Theory of Groups of Finite Order', attributing it instead to . Burnside's Lemma counts "orbits", which is the same thing as counting distinct objects taking account of a symmetry. Other ways of saying it are counting distinct objects up to an equivalence relation ''R'', or counting objects that are in canonical form. In the following, let ''G'' be a finite group that acts on a set ''X''. For each ''g'' in ''G'', let ''Xg'' denote the set of elements in ''X'' that are fixed by ''g'' (also said to be ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Numerical Analysis
Numerical analysis is the study of algorithms that use numerical approximation (as opposed to symbolic computation, symbolic manipulations) for the problems of mathematical analysis (as distinguished from discrete mathematics). It is the study of numerical methods that attempt at finding approximate solutions of problems rather than the exact ones. Numerical analysis finds application in all fields of engineering and the physical sciences, and in the 21st century also the life and social sciences, medicine, business and even the arts. Current growth in computing power has enabled the use of more complex numerical analysis, providing detailed and realistic mathematical models in science and engineering. Examples of numerical analysis include: ordinary differential equations as found in celestial mechanics (predicting the motions of planets, stars and galaxies), numerical linear algebra in data analysis, and stochastic differential equations and Markov chains for simulating living ce ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Bramble–Hilbert Lemma
In mathematics, particularly numerical analysis, the Bramble–Hilbert lemma (mathematics), lemma, named after James H. Bramble and Stephen Hilbert, bounds the approximation error, error of an approximation of a function (mathematics), function \textstyle u by a polynomial of order at most \textstyle m-1 in terms of derivative (mathematics), derivatives of \textstyle u of order \textstyle m. Both the error of the approximation and the derivatives of \textstyle u are measured by Lp space, \textstyle L^ norms on a Bounded set, bounded Domain (mathematical analysis), domain in \textstyle \mathbb^. This is similar to classical numerical analysis, where, for example, the error of linear interpolation \textstyle u can be bounded using the second derivative of \textstyle u. However, the Bramble–Hilbert lemma applies in any number of dimensions, not just one dimension, and the approximation error and the derivatives of \textstyle u are measured by more general norms involving averages, not ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Probability Theory
Probability theory is the branch of mathematics concerned with probability. Although there are several different probability interpretations, probability theory treats the concept in a rigorous mathematical manner by expressing it through a set of axioms. Typically these axioms formalise probability in terms of a probability space, which assigns a measure taking values between 0 and 1, termed the probability measure, to a set of outcomes called the sample space. Any specified subset of the sample space is called an event. Central subjects in probability theory include discrete and continuous random variables, probability distributions, and stochastic processes (which provide mathematical abstractions of non-deterministic or uncertain processes or measured quantities that may either be single occurrences or evolve over time in a random fashion). Although it is not possible to perfectly predict random events, much can be said about their behavior. Two major results in probability ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Borel–Cantelli Lemma
In probability theory, the Borel–Cantelli lemma is a theorem about sequences of events. In general, it is a result in measure theory. It is named after Émile Borel and Francesco Paolo Cantelli, who gave statement to the lemma in the first decades of the 20th century. A related result, sometimes called the second Borel–Cantelli lemma, is a partial converse of the first Borel–Cantelli lemma. The lemma states that, under certain conditions, an event will have probability of either zero or one. Accordingly, it is the best-known of a class of similar theorems, known as zero-one laws. Other examples include Kolmogorov's zero–one law and the Hewitt–Savage zero–one law. Statement of lemma for probability spaces Let ''E''1,''E''2,... be a sequence of events in some probability space. The Borel–Cantelli lemma states: Here, "lim sup" denotes limit supremum of the sequence of events, and each event is a set of outcomes. That is, lim sup ''E''''n'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Partial Differential Equation
In mathematics, a partial differential equation (PDE) is an equation which imposes relations between the various partial derivatives of a Multivariable calculus, multivariable function. The function is often thought of as an "unknown" to be solved for, similarly to how is thought of as an unknown number to be solved for in an algebraic equation like . However, it is usually impossible to write down explicit formulas for solutions of partial differential equations. There is, correspondingly, a vast amount of modern mathematical and scientific research on methods to Numerical methods for partial differential equations, numerically approximate solutions of certain partial differential equations using computers. Partial differential equations also occupy a large sector of pure mathematics, pure mathematical research, in which the usual questions are, broadly speaking, on the identification of general qualitative features of solutions of various partial differential equations, such a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Borel's Lemma
In mathematics, Borel's lemma, named after Émile Borel, is an important result used in the theory of asymptotic expansions and partial differential equations. Statement Suppose ''U'' is an open set in the Euclidean space R''n'', and suppose that ''f''0, ''f''1, ... is a sequence of smooth functions on ''U''. If ''I'' is any open interval in R containing 0 (possibly ''I'' = R), then there exists a smooth function ''F''(''t'', ''x'') defined on ''I''×''U'', such that :\left.\frac\_ = f_k(x), for ''k'' ≥ 0 and ''x'' in ''U''. Proof Proofs of Borel's lemma can be found in many text books on analysis, including and , from which the proof below is taken. Note that it suffices to prove the result for a small interval ''I'' = (−''ε'',''ε''), since if ''ψ''(''t'') is a smooth bump function with compact support in (−''ε'',''ε'') equal identically to 1 near 0, then ''ψ''(''t'') ⋅ ''F''(''t'', ''x'') gives a solution on R × ''U''. Similarly using a smooth partition of uni ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Diophantine Equation
In mathematics, a Diophantine equation is an equation, typically a polynomial equation in two or more unknowns with integer coefficients, such that the only solutions of interest are the integer ones. A linear Diophantine equation equates to a constant the sum of two or more monomials, each of degree one. An exponential Diophantine equation is one in which unknowns can appear in exponents. Diophantine problems have fewer equations than unknowns and involve finding integers that solve simultaneously all equations. As such systems of equations define algebraic curves, algebraic surfaces, or, more generally, algebraic sets, their study is a part of algebraic geometry that is called ''Diophantine geometry''. The word ''Diophantine'' refers to the Hellenistic mathematician of the 3rd century, Diophantus of Alexandria, who made a study of such equations and was one of the first mathematicians to introduce symbolism into algebra. The mathematical study of Diophantine problems that Di ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]