List Of Knot Theory Topics
   HOME
*





List Of Knot Theory Topics
Knot theory is the study of mathematical knots. While inspired by knots which appear in daily life in shoelaces and rope, a mathematician's knot differs in that the ends are joined together so that it cannot be undone. In precise mathematical language, a knot is an embedding of a circle in 3-dimensional Euclidean space, R3. Two mathematical knots are equivalent if one can be transformed into the other via a deformation of R3 upon itself (known as an ambient isotopy); these transformations correspond to manipulations of a knotted string that do not involve cutting the string or passing the string through itself. History Knots, links, braids * Knot (mathematics) gives a general introduction to the concept of a knot. ** Two classes of knots: torus knots and pretzel knots ** Cinquefoil knot also known as a (5, 2) torus knot. ** Figure-eight knot (mathematics) the only 4-crossing knot ** Granny knot (mathematics) and Square knot (mathematics) are a connected sum of two Trefoi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Knot Theory
In the mathematical field of topology, knot theory is the study of knot (mathematics), mathematical knots. While inspired by knots which appear in daily life, such as those in shoelaces and rope, a mathematical knot differs in that the ends are joined so it cannot be undone, Unknot, the simplest knot being a ring (or "unknot"). In mathematical language, a knot is an embedding of a circle in 3-dimensional Euclidean space, \mathbb^3 (in topology, a circle is not bound to the classical geometric concept, but to all of its homeomorphisms). Two mathematical knots are equivalent if one can be transformed into the other via a deformation of \mathbb^3 upon itself (known as an ambient isotopy); these transformations correspond to manipulations of a knotted string that do not involve cutting it or passing through itself. Knots can be described in various ways. Using different description methods, there may be more than one description of the same knot. For example, a common method of descr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Three-twist Knot
In knot theory, the three-twist knot is the twist knot with three-half twists. It is listed as the 52 knot in the Alexander-Briggs notation, and is one of two knots with crossing number five, the other being the cinquefoil knot. Properties The three-twist knot is a prime knot, and it is invertible but not amphichiral. Its Alexander polynomial is :\Delta(t) = 2t-3+2t^, \, its Conway polynomial is :\nabla(z) = 2z^2+1, \, and its Jones polynomial is :V(q) = q^ - q^ + 2q^ - q^ + q^ - q^. \, Because the Alexander polynomial is not monic, the three-twist knot is not fibered. The three-twist knot is a hyperbolic knot, with its complement having a volume Volume is a measure of occupied three-dimensional space. It is often quantified numerically using SI derived units (such as the cubic metre and litre) or by various imperial or US customary units (such as the gallon, quart, cubic inch). The de ... of approximately 2.82812. If the fibre of the knot in the initial ima ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lens Space
A lens space is an example of a topological space, considered in mathematics. The term often refers to a specific class of 3-manifolds, but in general can be defined for higher dimensions. In the 3-manifold case, a lens space can be visualized as the result of gluing two solid tori together by a homeomorphism of their boundaries. Often the 3-sphere and S^2 \times S^1, both of which can be obtained as above, are not counted as they are considered trivial special cases. The three-dimensional lens spaces L(p,q) were introduced by Heinrich Tietze in 1908. They were the first known examples of 3-manifolds which were not determined by their homology and fundamental group alone, and the simplest examples of closed manifolds whose homeomorphism type is not determined by their homotopy type. J. W. Alexander in 1919 showed that the lens spaces L(5;1) and L(5;2) were not homeomorphic even though they have isomorphic fundamental groups and the same homology, though they do not have th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Berge Knot
In the mathematical theory of knots, a Berge knot (named after mathematician John Berge) or doubly primitive knot is any member of a particular family of knots in the 3-sphere. A Berge knot ''K'' is defined by the conditions: # ''K'' lies on a genus two Heegaard surface ''S'' # in each handlebody bound by ''S'', ''K'' meets some meridian disc exactly once. John Berge constructed these knots as a way of creating knots with lens space surgeries and classified all the Berge knots. Cameron Gordon conjectured these were the only knots admitting lens space surgeries. This is now known as the Berge conjecture. Berge conjecture The Berge conjecture states that the only knots in the 3-sphere which admit lens space surgeries are Berge knots. The conjecture (and family of Berge knots) is named after John Berge. Progress on the conjecture has been slow. Recently Yi Ni proved that if a knot admits a lens space surgery, then it is fibered. Subsequently, Joshua Greene showed that the len ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Alternating Knot
In knot theory, a knot or link diagram is alternating if the crossings alternate under, over, under, over, as one travels along each component of the link. A link is alternating if it has an alternating diagram. Many of the knots with crossing number less than 10 are alternating. This fact and useful properties of alternating knots, such as the Tait conjectures, was what enabled early knot tabulators, such as Tait, to construct tables with relatively few mistakes or omissions. The simplest non-alternating prime knots have 8 crossings (and there are three such: 819, 820, 821). It is conjectured that as the crossing number increases, the percentage of knots that are alternating goes to 0 exponentially quickly. Alternating links end up having an important role in knot theory and 3-manifold theory, due to their complements having useful and interesting geometric and topological properties. This led Ralph Fox to ask, "What is an alternating knot?" By this he was asking what non-diag ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




2-bridge Knot
In the mathematical field of knot theory, a 2-bridge knot is a knot which can be regular isotoped so that the natural height function given by the ''z''-coordinate has only two maxima and two minima as critical points. Equivalently, these are the knots with bridge number 2, the smallest possible bridge number for a nontrivial knot. Other names for 2-bridge knots are rational knots, 4-plats, and ' (). 2-bridge links are defined similarly as above, but each component will have one min and max. 2-bridge knots were classified by Horst Schubert, using the fact that the 2-sheeted branched cover of the 3-sphere over the knot is a lens space. Schubert normal form The names rational knot and rational link were coined by John Conway John Horton Conway (26 December 1937 – 11 April 2020) was an English mathematician active in the theory of finite groups, knot theory, number theory, combinatorial game theory and coding theory. He also made contributions to many branches o ... who de ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Continued Fraction Regular Form
''...Continued'' is the second album released by Tony Joe White. It was released on Monument Records and contained the single Roosevelt and Ira Lee It was recorded at Monument Studios, Nashville and Lyn-Lou Studios, Memphis in 1969. It was produced by Billy Swan and engineered by Tommy Strong and Mort Thomasson. The album was re-released on by Movieplay/Intermusic from Portugal in 1993 with a different cover and another title (''Roosevelt And Ira Lee''). In 1997 it was rereleased by Warner Brothers containing two additional songs - "Watching The Trains Go By" (by Dewey Oldham and Wallace Pennington) and "Old Man Willis" (by Tony Joe White himself) was the second single. "Old Man Willis" was later re-recorded for the album. The album contained the track "Rainy Night In Georgia" popularized by R&B vocalist Brook Benton in 1970. It reached #4 on the Pop Singles and #2 on the Adult Contemporary charts, respectively. The RIAA certified the single gold for sales of one million ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gauss Diagram
Gauss notation (also known as a Gauss code or Gauss word) is a notation for mathematical knots. It is created by enumerating and classifying the crossings of an embedding of the knot in a plane. It is named for the mathematician Carl Friedrich Gauss (1777–1855). Gauss code represents a knot with a sequence of integers. However, rather than every crossing being represented by two different numbers, crossings are labeled with only one number. When the crossing is an overcrossing, a positive number is listed. At an undercrossing, a negative number. For example, the trefoil knot in Gauss code can be given as: 1,−2,3,−1,2,−3. Gauss code is limited in its ability to identify knots by a few problems. The starting point on the knot at which to begin tracing the crossings is arbitrary, and there is no way to determine which direction to trace in. Also, Gauss code is unable to indicate the handedness of each crossing, which is necessary to identify a knot versus its mirror. For ex ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gauss Code
Gauss notation (also known as a Gauss code or Gauss word) is a notation for mathematical knots. It is created by enumerating and classifying the crossings of an embedding of the knot in a plane. It is named for the mathematician Carl Friedrich Gauss (1777–1855). Gauss code represents a knot with a sequence of integers. However, rather than every crossing being represented by two different numbers, crossings are labeled with only one number. When the crossing is an overcrossing, a positive number is listed. At an undercrossing, a negative number. For example, the trefoil knot in Gauss code can be given as: 1,−2,3,−1,2,−3. Gauss code is limited in its ability to identify knots by a few problems. The starting point on the knot at which to begin tracing the crossings is arbitrary, and there is no way to determine which direction to trace in. Also, Gauss code is unable to indicate the handedness of each crossing, which is necessary to identify a knot versus its mirror. For exam ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dowker–Thistlethwaite Notation
In the mathematical field of knot theory, the Dowker–Thistlethwaite (DT) notation or code, for a knot is a sequence of even integers. The notation is named after Clifford Hugh Dowker and Morwen Thistlethwaite, who refined a notation originally due to Peter Guthrie Tait. Definition To generate the Dowker–Thistlethwaite notation, traverse the knot using an arbitrary starting point and direction. Label each of the n crossings with the numbers 1, ..., 2''n'' in order of traversal (each crossing is visited and labelled twice), with the following modification: if the label is an even number and the strand followed crosses over at the crossing, then change the sign on the label to be a negative. When finished, each crossing will be labelled a pair of integers, one even and one odd. The Dowker–Thistlethwaite notation is the sequence of even integer labels associated with the labels 1, 3, ..., 2''n'' − 1 in turn. Example For example, a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Conway Notation (knot Theory)
In knot theory, Conway notation, invented by John Horton Conway, is a way of describing knots that makes many of their properties clear. It composes a knot using certain operations on tangles to construct it. Basic concepts Tangles In Conway notation, the tangles are generally algebraic 2-tangles. This means their tangle diagrams consist of 2 arcs and 4 points on the edge of the diagram; furthermore, they are built up from rational tangles using the Conway operations. he following seems to be attempting to describe only integer or 1/n rational tanglesTangles consisting only of positive crossings are denoted by the number of crossings, or if there are only negative crossings it is denoted by a negative number. If the arcs are not crossed, or can be transformed into an uncrossed position with the Reidemeister moves, it is called the 0 or ∞ tangle, depending on the orientation of the tangle. Operations on tangles If a tangle, ''a'', is reflected on the NW-SE line, it is den ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Reidemeister Move
Kurt Werner Friedrich Reidemeister (13 October 1893 – 8 July 1971) was a mathematician born in Braunschweig (Brunswick), Germany. Life He was a brother of Marie Neurath. Beginning in 1912, he studied in Freiburg, Munich, Marburg, and Göttingen. In 1920, he got the staatsexamen (master's degree) in mathematics, philosophy, physics, chemistry, and geology. He received his doctorate in 1921 with a thesis in algebraic number theory at the University of Hamburg under the supervision of Erich Hecke. He became interested in differential geometry; he edited Wilhelm Blaschke's 2nd volume about that issue, and both made an acclaimed contribution to the Jena DMV conference in Sep 1921. In October 1922 (or 1923) he was appointed assistant professor at the University of Vienna. While there he became familiar with the work of Wilhelm Wirtinger on knot theory, and became closely connected to Hans Hahn and the Vienna Circle. Its manifesto (1929) lists one of Reidemeister's publications i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]