Liouville Field Theory
   HOME
*



picture info

Liouville Field Theory
In physics, Liouville field theory (or simply Liouville theory) is a two-dimensional conformal field theory whose classical equation of motion is a generalization of Liouville's equation. Liouville theory is defined for all complex values of the central charge c of its Virasoro symmetry algebra, but it is unitary only if :c\in(1,+\infty), and its classical limit is : c\to +\infty. Although it is an interacting theory with a continuous spectrum, Liouville theory has been solved. In particular, its three-point function on the sphere has been determined analytically. Introduction Liouville theory describes the dynamics of a field \phi called the Liouville field, which is defined on a two-dimensional space. This field is not a free field due to the presence of an exponential potential : V(\phi) = e^\ , where the parameter b is called the coupling constant. In a free field theory, the energy eigenvectors e^ are linearly independent, and the momentum \alpha is conserved in inter ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Physics
Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which relates to the order of nature, or, in other words, to the regular succession of events." Physics is one of the most fundamental scientific disciplines, with its main goal being to understand how the universe behaves. "Physics is one of the most fundamental of the sciences. Scientists of all disciplines use the ideas of physics, including chemists who study the structure of molecules, paleontologists who try to reconstruct how dinosaurs walked, and climatologists who study how human activities affect the atmosphere and oceans. Physics is also the foundation of all engineering and technology. No engineer could design a flat-screen TV, an interplanetary spacecraft, or even a better mousetrap without first understanding the basic laws of physics ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Duality (mathematics)
In mathematics, a duality translates concepts, theorems or mathematical structures into other concepts, theorems or structures, in a one-to-one fashion, often (but not always) by means of an involution operation: if the dual of is , then the dual of is . Such involutions sometimes have fixed points, so that the dual of is itself. For example, Desargues' theorem is self-dual in this sense under the ''standard duality in projective geometry''. In mathematical contexts, ''duality'' has numerous meanings. It has been described as "a very pervasive and important concept in (modern) mathematics" and "an important general theme that has manifestations in almost every area of mathematics". Many mathematical dualities between objects of two types correspond to pairings, bilinear functions from an object of one type and another object of the second type to some family of scalars. For instance, ''linear algebra duality'' corresponds in this way to bilinear maps from pairs of vecto ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Riemann Surface
In mathematics, particularly in complex analysis, a Riemann surface is a connected one-dimensional complex manifold. These surfaces were first studied by and are named after Bernhard Riemann. Riemann surfaces can be thought of as deformed versions of the complex plane: locally near every point they look like patches of the complex plane, but the global topology can be quite different. For example, they can look like a sphere or a torus or several sheets glued together. The main interest in Riemann surfaces is that holomorphic functions may be defined between them. Riemann surfaces are nowadays considered the natural setting for studying the global behavior of these functions, especially multi-valued functions such as the square root and other algebraic functions, or the logarithm. Every Riemann surface is a two-dimensional real analytic manifold (i.e., a surface), but it contains more structure (specifically a complex structure) which is needed for the unambiguous def ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Crossing Symmetry
In quantum field theory, a branch of theoretical physics, crossing is the property of scattering amplitudes that allows antiparticles to be interpreted as particles going backwards in time. Crossing states that the same formula that determines the S-matrix elements and scattering amplitudes for particle \mathrm to scatter with \mathrm and produce particle \mathrm and \mathrm will also give the scattering amplitude for \scriptstyle \mathrm+\bar+\mathrm to go into \mathrm, or for \scriptstyle \bar to scatter with \scriptstyle \mathrm to produce \scriptstyle \mathrm+\bar. The only difference is that the value of the energy is negative for the antiparticle. The formal way to state this property is that the antiparticle scattering amplitudes are the analytic continuation of particle scattering amplitudes to negative energies. The interpretation of this statement is that the antiparticle is in every way a particle going backwards in time. History Murray Gell-Mann and Marvin Leonard Go ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Virasoro Conformal Block
In two-dimensional conformal field theory, Virasoro conformal blocks (named after Miguel Ángel Virasoro) are special functions that serve as building blocks of correlation functions. On a given punctured Riemann surface, Virasoro conformal blocks form a particular basis of the space of solutions of the conformal Ward identites. Zero-point blocks on the torus are characters of representations of the Virasoro algebra; four-point blocks on the sphere reduce to hypergeometric functions in special cases, but are in general much more complicated. In two dimensions as in other dimensions, conformal blocks play an essential role in the conformal bootstrap approach to conformal field theory. Definition Definition from OPEs Using operator product expansions (OPEs), an N-point function on the sphere can be written as a combination of three-point structure constants, and universal quantities called N-point conformal blocks.P. Di Francesco, P. Mathieu, and D. Sénéchal, ''Conformal F ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Multiple Gamma Function
In mathematics, the multiple gamma function \Gamma_N is a generalization of the Euler gamma function and the Barnes G-function. The double gamma function was studied by . At the end of this paper he mentioned the existence of multiple gamma functions generalizing it, and studied these further in . Double gamma functions \Gamma_2 are closely related to the q-gamma function, and triple gamma functions \Gamma_3 are related to the elliptic gamma function. Definition For \Re a_i>0, let :\Gamma_N(w\mid a_1,\ldots,a_N) = \exp\left(\left.\frac \zeta_N(s,w \mid a_1, \ldots, a_N) \_ \right)\ , where \zeta_N is the Barnes zeta function. (This differs by a constant from Barnes's original definition.) Properties Considered as a meromorphic function of w, \Gamma_N(w\mid a_1,\ldots,a_N) has no zeros. It has poles at w= -\sum_^N n_ia_i for non-negative integers n_i. These poles are simple unless some of them coincide. Up to multiplication by the exponential of a polynomial, \Gamma_N(w\m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Representation (mathematics)
In mathematics, a representation is a very general relationship that expresses similarities (or equivalences) between mathematical objects or structures. Roughly speaking, a collection ''Y'' of mathematical objects may be said to ''represent'' another collection ''X'' of objects, provided that the properties and relationships existing among the representing objects ''yi'' conform, in some consistent way, to those existing among the corresponding represented objects ''xi''. More specifically, given a set ''Π'' of properties and relations, a ''Π''-representation of some structure ''X'' is a structure ''Y'' that is the image of ''X'' under a homomorphism that preserves ''Π''. The label ''representation'' is sometimes also applied to the homomorphism itself (such as group homomorphism in group theory). Representation theory Perhaps the most well-developed example of this general notion is the subfield of abstract algebra called representation theory, which studies the represen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Parameter
A parameter (), generally, is any characteristic that can help in defining or classifying a particular system (meaning an event, project, object, situation, etc.). That is, a parameter is an element of a system that is useful, or critical, when identifying the system, or when evaluating its performance, status, condition, etc. ''Parameter'' has more specific meanings within various disciplines, including mathematics, computer programming, engineering, statistics, logic, linguistics, and electronic musical composition. In addition to its technical uses, there are also extended uses, especially in non-scientific contexts, where it is used to mean defining characteristics or boundaries, as in the phrases 'test parameters' or 'game play parameters'. Modelization When a system is modeled by equations, the values that describe the system are called ''parameters''. For example, in mechanics, the masses, the dimensions and shapes (for solid bodies), the densities and the viscosit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Operator Product Expansion
In quantum field theory, the operator product expansion (OPE) is used as an axiom to define the product of fields as a sum over the same fields. As an axiom, it offers a non-perturbative approach to quantum field theory. One example is the vertex operator algebra, which has been used to construct two-dimensional conformal field theories. Whether this result can be extended to QFT in general, thus resolving many of the difficulties of a perturbative approach, remains an open research question. In practical calculations, such as those needed for scattering amplitudes in various collider experiments, the operator product expansion is used in QCD sum rules to combine results from both perturbative and non-perturbative (condensate) calculations. 2D Euclidean quantum field theory In 2D Euclidean field theory, the operator product expansion is a Laurent series expansion associated to two operators. A Laurent series is a generalization of the Taylor series in that finitely many pow ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Vacuum State
In quantum field theory, the quantum vacuum state (also called the quantum vacuum or vacuum state) is the quantum state with the lowest possible energy. Generally, it contains no physical particles. The word zero-point field is sometimes used as a synonym for the vacuum state of a quantized field which is completely individual. According to present-day understanding of what is called the vacuum state or the quantum vacuum, it is "by no means a simple empty space". According to quantum mechanics, the vacuum state is not truly empty but instead contains fleeting electromagnetic waves and particles that pop into and out of the quantum field. The QED vacuum of quantum electrodynamics (or QED) was the first vacuum of quantum field theory to be developed. QED originated in the 1930s, and in the late 1940s and early 1950s it was reformulated by Feynman, Tomonaga, and Schwinger, who jointly received the Nobel prize for this work in 1965. For a historical discussion, see fo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Momentum
In Newtonian mechanics, momentum (more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. If is an object's mass and is its velocity (also a vector quantity), then the object's momentum is : \mathbf = m \mathbf. In the International System of Units (SI), the unit of measurement of momentum is the kilogram metre per second (kg⋅m/s), which is equivalent to the newton-second. Newton's second law of motion states that the rate of change of a body's momentum is equal to the net force acting on it. Momentum depends on the frame of reference, but in any inertial frame it is a ''conserved'' quantity, meaning that if a closed system is not affected by external forces, its total linear momentum does not change. Momentum is also conserved in special relativity (with a modified formula) and, in a modified form, in electrodynamics, quantum mechanics ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Verma Module
Verma modules, named after Daya-Nand Verma, are objects in the representation theory of Lie algebras, a branch of mathematics. Verma modules can be used in the classification of irreducible representations of a complex semisimple Lie algebra. Specifically, although Verma modules themselves are infinite dimensional, quotients of them can be used to construct finite-dimensional representations with highest weight \lambda, where \lambda is dominant and integral. Their homomorphisms correspond to invariant differential operators over flag manifolds. Informal construction We can explain the idea of a Verma module as follows. Let \mathfrak be a semisimple Lie algebra (over \mathbb, for simplicity). Let \mathfrak be a fixed Cartan subalgebra of \mathfrak and let R be the associated root system. Let R^+ be a fixed set of positive roots. For each \alpha\in R^+, choose a nonzero element X_\alpha for the corresponding root space \mathfrak_\alpha and a nonzero element Y_\alpha in the root ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]