Linear Context-free Rewriting Language
   HOME





Linear Context-free Rewriting Language
Generalized context-free grammar (GCFG) is a grammar formalism that expands on Context-free grammar, context-free grammars by adding potentially non-context-free composition functions to rewrite rules. Head grammar (and its weak equivalents) is an instance of such a GCFG which is known to be especially adept at handling a wide variety of non-CF properties of natural language. Description A GCFG consists of two components: a set of composition functions that combine string tuples, and a set of rewrite rules. The composition functions all have the form f(\langle x_1, ..., x_m \rangle, \langle y_1, ..., y_n \rangle, ...) = \gamma, where \gamma is either a single string tuple, or some use of a (potentially different) composition function which reduces to a string tuple. Rewrite rules look like X \to f(Y, Z, ...), where Y, Z, ... are string tuples or non-terminal symbols. The rewrite semantics of GCFGs is fairly straightforward. An occurrence of a non-terminal symbol is rewritten usin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Context-free Grammar
In formal language theory, a context-free grammar (CFG) is a formal grammar whose production rules can be applied to a nonterminal symbol regardless of its context. In particular, in a context-free grammar, each production rule is of the form : A\ \to\ \alpha with A a ''single'' nonterminal symbol, and \alpha a string of terminals and/or nonterminals (\alpha can be empty). Regardless of which symbols surround it, the single nonterminal A on the left hand side can always be replaced by \alpha on the right hand side. This distinguishes it from a context-sensitive grammar, which can have production rules in the form \alpha A \beta \rightarrow \alpha \gamma \beta with A a nonterminal symbol and \alpha, \beta, and \gamma strings of terminal and/or nonterminal symbols. A formal grammar is essentially a set of production rules that describe all possible strings in a given formal language. Production rules are simple replacements. For example, the first rule in the picture, : \lan ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



MORE