Light-front Quantization Applications
   HOME



picture info

Light-front Quantization Applications
The light-front quantization of quantum field theories provides a useful alternative to ordinary equal-time quantization. In particular, it can lead to a relativistic description of bound systems in terms of quantum-mechanical wave functions. The quantization is based on the choice of light-front coordinates, where x^+\equiv ct+z plays the role of time and the corresponding spatial coordinate is x^-\equiv ct-z. Here, t is the ordinary time, z is a Cartesian coordinate, and c is the speed of light. The other two Cartesian coordinates, x and y, are untouched and often called transverse or perpendicular, denoted by symbols of the type \vec x_\perp = (x,y). The choice of the frame of reference where the time t and z-axis are defined can be left unspecified in an exactly soluble relativistic theory, but in practical calculations some choices may be more suitable than others. The basic formalism is discussed elsewhere. There are many applications of this technique, some of which a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

World Line
The world line (or worldline) of an object is the path that an object traces in 4-dimensional spacetime. It is an important concept of modern physics, and particularly theoretical physics. The concept of a "world line" is distinguished from concepts such as an "orbit" or a " trajectory" (e.g., a planet's ''orbit in space'' or the ''trajectory'' of a car on a road) by inclusion of the dimension ''time'', and typically encompasses a large area of spacetime wherein paths which are straight perceptually are rendered as curves in spacetime to show their (relatively) more absolute position states—to reveal the nature of special relativity or gravitational interactions. The idea of world lines was originated by physicists and was pioneered by Hermann Minkowski. The term is now used most often in the context of relativity theories (i.e., special relativity and general relativity). Usage in physics A world line of an object (generally approximated as a point in space, e.g., a p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



MORE