Lemniscate Of Booth
   HOME
*





Lemniscate Of Booth
In geometry, a hippopede () is a plane curve determined by an equation of the form :(x^2+y^2)^2=cx^2+dy^2, where it is assumed that and since the remaining cases either reduce to a single point or can be put into the given form with a rotation. Hippopedes are bicircular, rational, algebraic curves of degree 4 and symmetric with respect to both the and axes. Special cases When ''d'' > 0 the curve has an oval form and is often known as an oval of Booth, and when the curve resembles a sideways figure eight, or lemniscate, and is often known as a lemniscate of Booth, after 19th-century mathematician James Booth who studied them. Hippopedes were also investigated by Proclus (for whom they are sometimes called Hippopedes of Proclus) and Eudoxus. For , the hippopede corresponds to the lemniscate of Bernoulli. Definition as spiric sections Hippopedes can be defined as the curve formed by the intersection of a torus and a plane, where the plane is parallel to the axis of the to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lemniscate Of Bernoulli
In geometry, the lemniscate of Bernoulli is a plane curve defined from two given points and , known as foci, at distance from each other as the locus of points so that . The curve has a shape similar to the numeral 8 and to the ∞ symbol. Its name is from , which is Latin for "decorated with hanging ribbons". It is a special case of the Cassini oval and is a rational algebraic curve of degree 4. This lemniscate was first described in 1694 by Jakob Bernoulli as a modification of an ellipse, which is the locus of points for which the sum of the distances to each of two fixed ''focal points'' is a constant. A Cassini oval, by contrast, is the locus of points for which the ''product'' of these distances is constant. In the case where the curve passes through the point midway between the foci, the oval is a lemniscate of Bernoulli. This curve can be obtained as the inverse transform of a hyperbola, with the inversion circle centered at the center of the hyperbola (bisector o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


List Of Curves
This is a list of Wikipedia articles about curves used in different fields: mathematics (including geometry, statistics, and applied mathematics), physics, engineering, economics, medicine, biology, psychology, ecology, etc. Mathematics (Geometry) Algebraic curves Rational curves Rational curves are subdivided according to the degree of the polynomial. =Degree 1= * Line =Degree 2= Plane curves of degree 2 are known as conics or conic sections and include *Circle **Unit circle *Ellipse *Parabola *Hyperbola **Unit hyperbola =Degree 3= Cubic plane curves include *Cubic parabola *Folium of Descartes *Cissoid of Diocles *Conchoid of de Sluze *Right strophoid *Semicubical parabola *Serpentine curve *Trident curve *Trisectrix of Maclaurin *Tschirnhausen cubic *Witch of Agnesi =Degree 4= Quartic plane curves include *Ampersand curve *Bean curve * Bicorn *Bow curve *Bullet-nose curve *Cartesian oval *Cruciform curve *Deltoid curve * Devil's curve *Hippopede *Kampyle of Eudoxus *Kapp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cartesian Coordinate
A Cartesian coordinate system (, ) in a plane is a coordinate system that specifies each point uniquely by a pair of numerical coordinates, which are the signed distances to the point from two fixed perpendicular oriented lines, measured in the same unit of length. Each reference coordinate line is called a ''coordinate axis'' or just ''axis'' (plural ''axes'') of the system, and the point where they meet is its ''origin'', at ordered pair . The coordinates can also be defined as the positions of the perpendicular projections of the point onto the two axes, expressed as signed distances from the origin. One can use the same principle to specify the position of any point in three-dimensional space by three Cartesian coordinates, its signed distances to three mutually perpendicular planes (or, equivalently, by its perpendicular projection onto three mutually perpendicular lines). In general, ''n'' Cartesian coordinates (an element of real ''n''-space) specify the point in an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Polar Coordinate
In mathematics, the polar coordinate system is a two-dimensional coordinate system in which each point on a plane is determined by a distance from a reference point and an angle from a reference direction. The reference point (analogous to the origin of a Cartesian coordinate system) is called the ''pole'', and the ray from the pole in the reference direction is the ''polar axis''. The distance from the pole is called the ''radial coordinate'', ''radial distance'' or simply ''radius'', and the angle is called the ''angular coordinate'', ''polar angle'', or ''azimuth''. Angles in polar notation are generally expressed in either degrees or radians (2 rad being equal to 360°). Grégoire de Saint-Vincent and Bonaventura Cavalieri independently introduced the concepts in the mid-17th century, though the actual term "polar coordinates" has been attributed to Gregorio Fontana in the 18th century. The initial motivation for the introduction of the polar system was the study of circular ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Toric Section
A toric section is an intersection of a plane with a torus, just as a conic section is the intersection of a plane with a cone. Special cases have been known since antiquity, and the general case was studied by Jean Gaston Darboux.. Mathematical formulae In general, toric sections are fourth-order ( quartic) plane curves of the form : \left( x^2 + y^2 \right)^2 + a x^2 + b y^2 + cx + dy + e = 0. Spiric sections A special case of a toric section is the spiric section, in which the intersecting plane is parallel to the rotational symmetry axis of the torus. They were discovered by the ancient Greek geometer Perseus in roughly 150 BC. Well-known examples include the hippopede and the Cassini oval and their relatives, such as the lemniscate of Bernoulli. Villarceau circles Another special case is the Villarceau circles, in which the intersection is a circle despite the lack of any of the obvious sorts of symmetry that would entail a circular cross-section.. General toric s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Spiric Section
In geometry, a spiric section, sometimes called a spiric of Perseus, is a quartic plane curve defined by equations of the form :(x^2+y^2)^2=dx^2+ey^2+f. \, Equivalently, spiric sections can be defined as bicircular quartic curves that are symmetric with respect to the ''x'' and ''y''-axes. Spiric sections are included in the family of toric sections and include the family of hippopedes and the family of Cassini ovals. The name is from σπειρα meaning torus in ancient Greek. A spiric section is sometimes defined as the curve of intersection of a torus and a plane parallel to its rotational symmetry axis. However, this definition does not include all of the curves given by the previous definition unless imaginary planes are allowed. Spiric sections were first described by the ancient Greek geometer Perseus in roughly 150 BC, and are assumed to be the first toric sections to be described. The name ''spiric'' is due to the ancient notation ''spira'' of a torus., Wilbur R. Kn ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Torus
In geometry, a torus (plural tori, colloquially donut or doughnut) is a surface of revolution generated by revolving a circle in three-dimensional space about an axis that is coplanar with the circle. If the axis of revolution does not touch the circle, the surface has a ring shape and is called a torus of revolution. If the axis of revolution is tangent to the circle, the surface is a horn torus. If the axis of revolution passes twice through the circle, the surface is a spindle torus. If the axis of revolution passes through the center of the circle, the surface is a degenerate torus, a double-covered sphere. If the revolved curve is not a circle, the surface is called a ''toroid'', as in a square toroid. Real-world objects that approximate a torus of revolution include swim rings, inner tubes and ringette rings. Eyeglass lenses that combine spherical and cylindrical correction are toric lenses. A torus should not be confused with a '' solid torus'', which is formed by r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Hippopede01
In geometry, a hippopede () is a plane curve determined by an equation of the form :(x^2+y^2)^2=cx^2+dy^2, where it is assumed that and since the remaining cases either reduce to a single point or can be put into the given form with a rotation. Hippopedes are bicircular, rational, algebraic curves of degree 4 and symmetric with respect to both the and axes. Special cases When ''d'' > 0 the curve has an oval form and is often known as an oval of Booth, and when the curve resembles a sideways figure eight, or lemniscate, and is often known as a lemniscate of Booth, after 19th-century mathematician James Booth who studied them. Hippopedes were also investigated by Proclus (for whom they are sometimes called Hippopedes of Proclus) and Eudoxus. For , the hippopede corresponds to the lemniscate of Bernoulli. Definition as spiric sections Hippopedes can be defined as the curve formed by the intersection of a torus and a plane, where the plane is parallel to the axis of the to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hippopede02
In geometry, a hippopede () is a plane curve determined by an equation of the form :(x^2+y^2)^2=cx^2+dy^2, where it is assumed that and since the remaining cases either reduce to a single point or can be put into the given form with a rotation. Hippopedes are bicircular, rational, algebraic curves of degree 4 and symmetric with respect to both the and axes. Special cases When ''d'' > 0 the curve has an oval form and is often known as an oval of Booth, and when the curve resembles a sideways figure eight, or lemniscate, and is often known as a lemniscate of Booth, after 19th-century mathematician James Booth who studied them. Hippopedes were also investigated by Proclus (for whom they are sometimes called Hippopedes of Proclus) and Eudoxus. For , the hippopede corresponds to the lemniscate of Bernoulli. Definition as spiric sections Hippopedes can be defined as the curve formed by the intersection of a torus and a plane, where the plane is parallel to the axis of the to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Eudoxus Of Cnidus
Eudoxus of Cnidus (; grc, Εὔδοξος ὁ Κνίδιος, ''Eúdoxos ho Knídios''; ) was an ancient Greek astronomer, mathematician, scholar, and student of Archytas and Plato. All of his original works are lost, though some fragments are preserved in Hipparchus' commentary on Aratus's poem on astronomy. ''Sphaerics'' by Theodosius of Bithynia may be based on a work by Eudoxus. Life Eudoxus was born and died in Cnidus (also spelled Knidos), which was a city on the southwest coast of Asia Minor. The years of Eudoxus' birth and death are not fully known but the range may have been , or . His name Eudoxus means "honored" or "of good repute" (, from ''eu'' "good" and ''doxa'' "opinion, belief, fame"). It is analogous to the Latin name Benedictus. Eudoxus's father, Aeschines of Cnidus, loved to watch stars at night. Eudoxus first traveled to Tarentum to study with Archytas, from whom he learned mathematics. While in Italy, Eudoxus visited Sicily, where he studied medicine ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Geometry
Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is called a ''geometer''. Until the 19th century, geometry was almost exclusively devoted to Euclidean geometry, which includes the notions of point, line, plane, distance, angle, surface, and curve, as fundamental concepts. During the 19th century several discoveries enlarged dramatically the scope of geometry. One of the oldest such discoveries is Carl Friedrich Gauss' ("remarkable theorem") that asserts roughly that the Gaussian curvature of a surface is independent from any specific embedding in a Euclidean space. This implies that surfaces can be studied ''intrinsically'', that is, as stand-alone spaces, and has been expanded into the theory of manifolds and Riemannian geometry. Later in the 19th century, it appeared that geometries ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]