Leibniz Operator
   HOME
*





Leibniz Operator
In abstract algebraic logic, a branch of mathematical logic, the Leibniz operator is a tool used to classify deductive systems, which have a precise technical definition and capture a large number of logics. The Leibniz operator was introduced by Wim Blok and Don Pigozzi, two of the founders of the field, as a means to abstract the well-known Lindenbaum–Tarski process, that leads to the association of Boolean algebras to classical propositional calculus, and make it applicable to as wide a variety of sentential logics as possible. It is an operator that assigns to a given theory of a given sentential logic, perceived as a term algebra with a consequence operation on its universe, the largest congruence on the algebra that is compatible with the theory. Formulation In this article, we introduce the Leibniz operator in the special case of classical propositional calculus, then we abstract it to the general notion applied to an arbitrary sentential logic and, finally, we summarize ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Abstract Algebraic Logic
In mathematical logic, abstract algebraic logic is the study of the algebraization of deductive systems arising as an abstraction of the well-known Lindenbaum–Tarski algebra, and how the resulting algebras are related to logical systems.Font, 2003. History The archetypal association of this kind, one fundamental to the historical origins of algebraic logic and lying at the heart of all subsequently developed subtheories, is the association between the class of Boolean algebras and classical propositional calculus. This association was discovered by George Boole in the 1850s, and then further developed and refined by others, especially C. S. Peirce and Ernst Schröder, from the 1870s to the 1890s. This work culminated in Lindenbaum–Tarski algebras, devised by Alfred Tarski and his student Adolf Lindenbaum in the 1930s. Later, Tarski and his American students (whose ranks include Don Pigozzi) went on to discover cylindric algebra, whose representable instances algebraize al ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Algebraic Logic
In mathematical logic, algebraic logic is the reasoning obtained by manipulating equations with free variables. What is now usually called classical algebraic logic focuses on the identification and algebraic description of models appropriate for the study of various logics (in the form of classes of algebras that constitute the algebraic semantics for these deductive systems) and connected problems like representation and duality. Well known results like the representation theorem for Boolean algebras and Stone duality fall under the umbrella of classical algebraic logic . Works in the more recent abstract algebraic logic (AAL) focus on the process of algebraization itself, like classifying various forms of algebraizability using the Leibniz operator . Calculus of relations A homogeneous binary relation is found in the power set of ''X'' × ''X'' for some set ''X'', while a heterogeneous relation is found in the power set of ''X'' × ''Y'', where ''X'' ≠ ''Y''. Whether a g ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantifier (logic)
In logic, a quantifier is an operator that specifies how many individuals in the domain of discourse satisfy an open formula. For instance, the universal quantifier \forall in the first order formula \forall x P(x) expresses that everything in the domain satisfies the property denoted by P. On the other hand, the existential quantifier \exists in the formula \exists x P(x) expresses that there exists something in the domain which satisfies that property. A formula where a quantifier takes widest scope is called a quantified formula. A quantified formula must contain a bound variable and a subformula specifying a property of the referent of that variable. The mostly commonly used quantifiers are \forall and \exists. These quantifiers are standardly defined as duals; in classical logic, they are interdefinable using negation. They can also be used to define more complex quantifiers, as in the formula \neg \exists x P(x) which expresses that nothing has the property P. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Signature (logic)
In logic, especially mathematical logic, a signature lists and describes the non-logical symbols of a formal language. In universal algebra, a signature lists the operations that characterize an algebraic structure. In model theory, signatures are used for both purposes. They are rarely made explicit in more philosophical treatments of logic. Definition Formally, a (single-sorted) signature can be defined as a 4-tuple , where ''S''func and ''S''rel are disjoint sets not containing any other basic logical symbols, called respectively * ''function symbols'' (examples: +, ×, 0, 1), * ''relation symbols'' or ''predicates'' (examples: ≤, ∈), * ''constant symbols'' (examples: 0, 1), and a function ar: ''S''func \cup ''S''rel → \mathbb N which assigns a natural number called ''arity'' to every function or relation symbol. A function or relation symbol is called ''n''-ary if its arity is ''n''. Some authors define a nullary (0-ary) function symbol as ''constant s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Abstract Algebraic Hierarchy
In abstract algebraic logic, a branch of mathematical logic, the Leibniz operator is a tool used to classify deductive systems, which have a precise technical definition and capture a large number of logics. The Leibniz operator was introduced by Wim Blok and Don Pigozzi, two of the founders of the field, as a means to abstract the well-known Lindenbaum–Tarski process, that leads to the association of Boolean algebras to classical propositional calculus, and make it applicable to as wide a variety of sentential logics as possible. It is an operator that assigns to a given theory of a given sentential logic, perceived as a term algebra with a consequence operation on its universe, the largest congruence on the algebra that is compatible with the theory. Formulation In this article, we introduce the Leibniz operator in the special case of classical propositional calculus, then we abstract it to the general notion applied to an arbitrary sentential logic and, finally, we summarize ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Algebraic Semantics (mathematical Logic)
In mathematical logic, algebraic semantics is a formal semantics based on algebras studied as part of algebraic logic. For example, the modal logic S4 is characterized by the class of topological boolean algebras—that is, boolean algebras with an interior operator. Other modal logics are characterized by various other algebras with operators. The class of boolean algebras characterizes classical propositional logic, and the class of Heyting algebras propositional intuitionistic logic. MV-algebras are the algebraic semantics of Łukasiewicz logic. See also * Algebraic semantics (computer science) * Lindenbaum–Tarski algebra Further reading * (2nd published by ASL in 2009open accessat Project Euclid * * * Good introduction for readers with prior exposure to non-classical logics but without much background in order theory and/or universal algebra Universal algebra (sometimes called general algebra) is the field of mathematics that studies algebraic structures thems ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Congruence Relation
In abstract algebra, a congruence relation (or simply congruence) is an equivalence relation on an algebraic structure (such as a group, ring, or vector space) that is compatible with the structure in the sense that algebraic operations done with equivalent elements will yield equivalent elements. Every congruence relation has a corresponding quotient structure, whose elements are the equivalence classes (or congruence classes) for the relation. Basic example The prototypical example of a congruence relation is congruence modulo n on the set of integers. For a given positive integer n, two integers a and b are called congruent modulo n, written : a \equiv b \pmod if a - b is divisible by n (or equivalently if a and b have the same remainder when divided by n). For example, 37 and 57 are congruent modulo 10, : 37 \equiv 57 \pmod since 37 - 57 = -20 is a multiple of 10, or equivalently since both 37 and 57 have a remainder of 7 when divided by 10. Congruence modulo n (for ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mathematical Logic
Mathematical logic is the study of logic, formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory. Research in mathematical logic commonly addresses the mathematical properties of formal systems of logic such as their expressive or deductive power. However, it can also include uses of logic to characterize correct mathematical reasoning or to establish foundations of mathematics. Since its inception, mathematical logic has both contributed to and been motivated by the study of foundations of mathematics. This study began in the late 19th century with the development of axiomatic frameworks for geometry, arithmetic, and Mathematical analysis, analysis. In the early 20th century it was shaped by David Hilbert's Hilbert's program, program to prove the consistency of foundational theories. Results of Kurt Gödel, Gerhard Gentzen, and others provided partial resolution to the program, and clarified the issues involved in pr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]