Lawvere–Tierney Topology
   HOME
*





Lawvere–Tierney Topology
In mathematics, a Lawvere–Tierney topology is an analog of a Grothendieck topology for an arbitrary topos, used to construct a topos of sheaves. A Lawvere–Tierney topology is also sometimes also called a local operator or coverage or topology or geometric modality. They were introduced by and Myles Tierney. Definition If ''E'' is a topos, then a topology on ''E'' is a morphism ''j'' from the subobject classifier In category theory, a subobject classifier is a special object Ω of a category such that, intuitively, the subobjects of any object ''X'' in the category correspond to the morphisms from ''X'' to Ω. In typical examples, that morphism assigns "true ... Ω to Ω such that ''j'' preserves truth (j \circ \mbox = \mbox), preserves intersections (j \circ \wedge = \wedge \circ (j \times j)), and is idempotent (j \circ j = j). ''j''-closure Given a subobject s:S \rightarrowtail A of an object ''A'' with classifier \chi_s:A \rightarrow \Omega, then the composition j \circ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Grothendieck Topology
In category theory, a branch of mathematics, a Grothendieck topology is a structure on a category ''C'' that makes the objects of ''C'' act like the open sets of a topological space. A category together with a choice of Grothendieck topology is called a site. Grothendieck topologies axiomatize the notion of an open cover. Using the notion of covering provided by a Grothendieck topology, it becomes possible to define sheaves on a category and their cohomology. This was first done in algebraic geometry and algebraic number theory by Alexander Grothendieck to define the étale cohomology of a scheme. It has been used to define other cohomology theories since then, such as ℓ-adic cohomology, flat cohomology, and crystalline cohomology. While Grothendieck topologies are most often used to define cohomology theories, they have found other applications as well, such as to John Tate's theory of rigid analytic geometry. There is a natural way to associate a site to an ordinary top ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Topos
In mathematics, a topos (, ; plural topoi or , or toposes) is a category that behaves like the category of sheaves of sets on a topological space (or more generally: on a site). Topoi behave much like the category of sets and possess a notion of localization; they are a direct generalization of point-set topology. The Grothendieck topoi find applications in algebraic geometry; the more general elementary topoi are used in logic. The mathematical field that studies topoi is called topos theory. Grothendieck topos (topos in geometry) Since the introduction of sheaves into mathematics in the 1940s, a major theme has been to study a space by studying sheaves on a space. This idea was expounded by Alexander Grothendieck by introducing the notion of a "topos". The main utility of this notion is in the abundance of situations in mathematics where topological heuristics are very effective, but an honest topological space is lacking; it is sometimes possible to find a topos formaliz ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Myles Tierney
Myles Tierney (September 1937 – 5 October 2017) was an American mathematician and Professor at Rutgers University who founded the theory of elementary toposes with William Lawvere. Tierney obtained his B.A. from Brown University in 1959 and his Ph.D. from Columbia University in 1965. His dissertation, ''On the classifying spaces for K-Theory mod p'', was written under the supervision of Samuel Eilenberg. Following positions at Rice University (1965–66) and ETH Zurich (1966–68), he became an associate professor at Rutgers in 1968. Tierney was named a Fellow of the American Mathematical Society.List of Fellows of the American Mathematical Society
retrieved 2016-11-06.


Publications

*

Subobject Classifier
In category theory, a subobject classifier is a special object Ω of a category such that, intuitively, the subobjects of any object ''X'' in the category correspond to the morphisms from ''X'' to Ω. In typical examples, that morphism assigns "true" to the elements of the subobject and "false" to the other elements of ''X.'' Therefore, a subobject classifier is also known as a "truth value object" and the concept is widely used in the categorical description of logic. Note however that subobject classifiers are often much more complicated than the simple binary logic truth values . Introductory example As an example, the set Ω = is a subobject classifier in the category of sets and functions: to every subset ''A'' of ''S'' defined by the inclusion function '' j '' : ''A'' → ''S'' we can assign the function ''χA'' from ''S'' to Ω that maps precisely the elements of ''A'' to 1 (see characteristic function). Every function from ''S'' to Ω arises in this fashion from prec ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Closure Operator
In mathematics, a closure operator on a set ''S'' is a function \operatorname: \mathcal(S)\rightarrow \mathcal(S) from the power set of ''S'' to itself that satisfies the following conditions for all sets X,Y\subseteq S : Closure operators are determined by their closed sets, i.e., by the sets of the form cl(''X''), since the closure cl(''X'') of a set ''X'' is the smallest closed set containing ''X''. Such families of "closed sets" are sometimes called closure systems or "Moore families", in honor of E. H. Moore who studied closure operators in his 1910 ''Introduction to a form of general analysis'', whereas the concept of the closure of a subset originated in the work of Frigyes Riesz in connection with topological spaces. Though not formalized at the time, the idea of closure originated in the late 19th century with notable contributions by Ernst Schröder, Richard Dedekind and Georg Cantor. Closure operators are also called "hull operators", which prevents confusion with the "c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Topos Theory
In mathematics, a topos (, ; plural topoi or , or toposes) is a category that behaves like the category of sheaves of sets on a topological space (or more generally: on a site). Topoi behave much like the category of sets and possess a notion of localization; they are a direct generalization of point-set topology. The Grothendieck topoi find applications in algebraic geometry; the more general elementary topoi are used in logic. The mathematical field that studies topoi is called topos theory. Grothendieck topos (topos in geometry) Since the introduction of sheaves into mathematics in the 1940s, a major theme has been to study a space by studying sheaves on a space. This idea was expounded by Alexander Grothendieck by introducing the notion of a "topos". The main utility of this notion is in the abundance of situations in mathematics where topological heuristics are very effective, but an honest topological space is lacking; it is sometimes possible to find a topos formaliz ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]