Lattice Of Subgroups
   HOME
*



picture info

Lattice Of Subgroups
In mathematics, the lattice of subgroups of a group G is the lattice whose elements are the subgroups of G, with the partial order relation being set inclusion. In this lattice, the join of two subgroups is the subgroup generated by their union, and the meet of two subgroups is their intersection. Example The dihedral group Dih4 has ten subgroups, counting itself and the trivial subgroup. Five of the eight group elements generate subgroups of order two, and the other two non-identity elements both generate the same cyclic subgroup of order four. In addition, there are two subgroups of the form Z2 × Z2, generated by pairs of order-two elements. The lattice formed by these ten subgroups is shown in the illustration. This example also shows that the lattice of all subgroups of a group is not a modular lattice in general. Indeed, this particular lattice contains the forbidden "pentagon" ''N''5 as a sublattice. Properties For any ''A'', ''B'', and ''C'' subgroups of a g ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Quasinormal Subgroup
__NOTOC__ In mathematics, in the field of group theory, a quasinormal subgroup, or permutable subgroup, is a subgroup of a group that commutes (permutes) with every other subgroup with respect to the product of subgroups. The term ''quasinormal subgroup'' was introduced by Øystein Ore in 1937. Two subgroups are said to permute (or commute) if any element from the first subgroup, times an element of the second subgroup, can be written as an element of the second subgroup, times an element of the first subgroup. That is, H and K as subgroups of G are said to commute if ''HK'' = ''KH'', that is, any element of the form hk with h \in H and k \in K can be written in the form k'h' where k' \in K and h' \in H. Every normal subgroup is quasinormal, because a normal subgroup commutes with every element of the group. The converse is not true. For instance, any extension of a cyclic p-group by another cyclic p-group for the same (odd) prime has the property that all its subgroups are qua ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Sublattice
A lattice is an abstract structure studied in the mathematical subdisciplines of order theory and abstract algebra. It consists of a partially ordered set in which every pair of elements has a unique supremum (also called a least upper bound or join (mathematics), join) and a unique infimum (also called a greatest lower bound or meet (mathematics), meet). An example is given by the power set of a set, partially ordered by Subset, inclusion, for which the supremum is the Union (set theory), union and the infimum is the Intersection (set theory), intersection. Another example is given by the natural numbers, partially ordered by divisibility, for which the supremum is the least common multiple and the infimum is the greatest common divisor. Lattices can also be characterized as algebraic structures satisfying certain axiomatic Identity (mathematics), identities. Since the two definitions are equivalent, lattice theory draws on both order theory and universal algebra. Semilatti ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Solvable Group
In mathematics, more specifically in the field of group theory, a solvable group or soluble group is a group that can be constructed from abelian groups using extensions. Equivalently, a solvable group is a group whose derived series terminates in the trivial subgroup. Motivation Historically, the word "solvable" arose from Galois theory and the proof of the general unsolvability of quintic equation. Specifically, a polynomial equation is solvable in radicals if and only if the corresponding Galois group is solvable (note this theorem holds only in characteristic 0). This means associated to a polynomial f \in F /math> there is a tower of field extensionsF = F_0 \subseteq F_1 \subseteq F_2 \subseteq \cdots \subseteq F_m=Ksuch that # F_i = F_ alpha_i/math> where \alpha_i^ \in F_, so \alpha_i is a solution to the equation x^ - a where a \in F_ # F_m contains a splitting field for f(x) Example For example, the smallest Galois field extension of \mathbb containing the elemen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Subnormal Subgroup
In mathematics, in the field of group theory, a subgroup ''H'' of a given group ''G'' is a subnormal subgroup of ''G'' if there is a finite chain of subgroups of the group, each one normal in the next, beginning at ''H'' and ending at ''G''. In notation, H is k-subnormal in G if there are subgroups :H=H_0,H_1,H_2,\ldots, H_k=G of G such that H_i is normal in H_ for each i. A subnormal subgroup is a subgroup that is k-subnormal for some positive integer k. Some facts about subnormal subgroups: * A 1-subnormal subgroup is a proper normal subgroup (and vice versa). * A finitely generated group is nilpotent if and only if each of its subgroups is subnormal. * Every quasinormal subgroup, and, more generally, every conjugate-permutable subgroup, of a finite group is subnormal. * Every pronormal subgroup that is also subnormal, is normal. In particular, a Sylow subgroup is subnormal if and only if it is normal. * Every 2-subnormal subgroup is a conjugate-permutable subgroup. The proper ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Fitting's Theorem
Fitting's theorem is a mathematical theorem proved by Hans Fitting. It can be stated as follows: :If ''M'' and ''N'' are nilpotent normal subgroups of a group ''G'', then their product ''MN'' is also a nilpotent normal subgroup of ''G''; if, moreover, ''M'' is nilpotent of class ''m'' and ''N'' is nilpotent of class ''n'', then ''MN'' is nilpotent of class at most ''m'' + ''n''. By induction it follows also that the subgroup generated by a finite collection of nilpotent normal subgroups is nilpotent. This can be used to show that the Fitting subgroup of certain types of groups (including all finite groups) is nilpotent. However, a subgroup generated by an ''infinite'' collection of nilpotent normal subgroups need not be nilpotent. Order-theoretic statement In terms of order theory, (part of) Fitting's theorem can be stated as: :The set of nilpotent normal subgroups form a lattice of subgroups. Thus the nilpotent normal subgroups of a ''finite'' group also form a bounded lattice, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Nilpotent Group
In mathematics, specifically group theory, a nilpotent group ''G'' is a group that has an upper central series that terminates with ''G''. Equivalently, its central series is of finite length or its lower central series terminates with . Intuitively, a nilpotent group is a group that is "almost abelian". This idea is motivated by the fact that nilpotent groups are solvable, and for finite nilpotent groups, two elements having relatively prime orders must commute. It is also true that finite nilpotent groups are supersolvable. The concept is credited to work in the 1930s by Russian mathematician Sergei Chernikov. Nilpotent groups arise in Galois theory, as well as in the classification of groups. They also appear prominently in the classification of Lie groups. Analogous terms are used for Lie algebras (using the Lie bracket) including nilpotent, lower central series, and upper central series. Definition The definition uses the idea of a central series for a group. The followi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Normal Subgroup
In abstract algebra, a normal subgroup (also known as an invariant subgroup or self-conjugate subgroup) is a subgroup that is invariant under conjugation by members of the group of which it is a part. In other words, a subgroup N of the group G is normal in G if and only if gng^ \in N for all g \in G and n \in N. The usual notation for this relation is N \triangleleft G. Normal subgroups are important because they (and only they) can be used to construct quotient groups of the given group. Furthermore, the normal subgroups of G are precisely the kernels of group homomorphisms with domain G, which means that they can be used to internally classify those homomorphisms. Évariste Galois was the first to realize the importance of the existence of normal subgroups. Definitions A subgroup N of a group G is called a normal subgroup of G if it is invariant under conjugation; that is, the conjugation of an element of N by an element of G is always in N. The usual notation for this re ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Finite Group
Finite is the opposite of infinite. It may refer to: * Finite number (other) * Finite set, a set whose cardinality (number of elements) is some natural number * Finite verb, a verb form that has a subject, usually being inflected or marked for person and/or tense or aspect * "Finite", a song by Sara Groves from the album '' Invisible Empires'' See also * * Nonfinite (other) Nonfinite is the opposite of finite * a nonfinite verb is a verb that is not capable of serving as the main verb in an independent clause * a non-finite clause In linguistics, a non-finite clause is a dependent or embedded clause that represen ... {{disambiguation fr:Fini it:Finito ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Finite Set
In mathematics, particularly set theory, a finite set is a set that has a finite number of elements. Informally, a finite set is a set which one could in principle count and finish counting. For example, :\ is a finite set with five elements. The number of elements of a finite set is a natural number (possibly zero) and is called the '' cardinality (or the cardinal number)'' of the set. A set that is not a finite set is called an ''infinite set''. For example, the set of all positive integers is infinite: :\. Finite sets are particularly important in combinatorics, the mathematical study of counting. Many arguments involving finite sets rely on the pigeonhole principle, which states that there cannot exist an injective function from a larger finite set to a smaller finite set. Definition and terminology Formally, a set is called finite if there exists a bijection :f\colon S\to\ for some natural number . The number is the set's cardinality, denoted as . The empty set o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Zassenhaus Lemma
Zassenhaus is a German surname. Notable people with the surname include: * Hans Zassenhaus (1912–1991), German mathematician ** Zassenhaus algorithm ** Zassenhaus group ** Zassenhaus lemma * Hiltgunt Zassenhaus (1916–2004), German philologist who aided Scandinavian prisoners during World War II, sister of Hans Zassenhaus See also * Brauerei Zassenhaus, a German brewery in Velbert Velbert ( Low Rhenish: ''Vèlbed'') is a town in the district of Mettmann, in the German state of North Rhine-Westphalia. The town is renowned worldwide for the production of locks and fittings. Geography Velbert is located on the hills of 'Niede ... (see :de:Brauerei Zassenhaus) {{surname, Zassenhaus German-language surnames ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Galois Connection
In mathematics, especially in order theory, a Galois connection is a particular correspondence (typically) between two partially ordered sets (posets). Galois connections find applications in various mathematical theories. They generalize the fundamental theorem of Galois theory about the correspondence between subgroups and subfields, discovered by the French mathematician Évariste Galois. A Galois connection can also be defined on preordered sets or classes; this article presents the common case of posets. The literature contains two closely related notions of "Galois connection". In this article, we will refer to them as (monotone) Galois connections and antitone Galois connections. A Galois connection is rather weak compared to an order isomorphism between the involved posets, but every Galois connection gives rise to an isomorphism of certain sub-posets, as will be explained below. The term Galois correspondence is sometimes used to mean a bijective ''Galois connection''; ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]