Larmor Formula
   HOME
*





Larmor Formula
In electrodynamics, the Larmor formula is used to calculate the total power radiated by a nonrelativistic point charge as it accelerates. It was first derived by J. J. Larmor in 1897, in the context of the wave theory of light. When any charged particle (such as an electron, a proton, or an ion) accelerates, energy is radiated in the form of electromagnetic waves. For a particle whose velocity is small relative to the speed of light (i.e., nonrelativistic), the total power that the particle radiates (when considered as a point charge) can be calculated by the Larmor formula: P = \frac \left(\frac\right)^2 = \frac= \frac = \mu_0 \frac \text P = \frac \text where \dot v or a — is the proper acceleration, q — is the charge, and c — is the speed of light. A relativistic generalization is given by the Liénard–Wiechert potentials. In either unit system, the power radiated by a single electron can be expressed in terms of the classical electron radius and e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Flux
Flux describes any effect that appears to pass or travel (whether it actually moves or not) through a surface or substance. Flux is a concept in applied mathematics and vector calculus which has many applications to physics. For transport phenomena, flux is a vector quantity, describing the magnitude and direction of the flow of a substance or property. In vector calculus flux is a scalar quantity, defined as the surface integral of the perpendicular component of a vector field over a surface. Terminology The word ''flux'' comes from Latin: ''fluxus'' means "flow", and ''fluere'' is "to flow". As '' fluxion'', this term was introduced into differential calculus by Isaac Newton. The concept of heat flux was a key contribution of Joseph Fourier, in the analysis of heat transfer phenomena. His seminal treatise ''Théorie analytique de la chaleur'' (''The Analytical Theory of Heat''), defines ''fluxion'' as a central quantity and proceeds to derive the now well-known ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cyclotron Radiation
Cyclotron radiation is electromagnetic radiation emitted by non-relativistic accelerating charged particles deflected by a magnetic field. The Lorentz force on the particles acts perpendicular to both the magnetic field lines and the particles' motion through them, creating an acceleration of charged particles that causes them to emit radiation as a result of the acceleration they undergo as they spiral around the lines of the magnetic field. The name of this radiation derives from the cyclotron, a type of particle accelerator used since the 1930s to create highly energetic particles for study. The cyclotron makes use of the circular orbits that charged particles exhibit in a uniform magnetic field. Furthermore, the period of the orbit is independent of the energy of the particles, allowing the cyclotron to operate at a set frequency. Cyclotron radiation is emitted by all charged particles travelling through magnetic fields, not just those in cyclotrons. Cyclotron radiation from pla ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Atomic Theory
Atomic theory is the scientific theory that matter is composed of particles called atoms. Atomic theory traces its origins to an ancient philosophical tradition known as atomism. According to this idea, if one were to take a lump of matter and cut it into ever smaller pieces, one would eventually reach a point where the pieces could not be further cut into anything smaller. Ancient Greek philosophers called these hypothetical ultimate particles of matter ''atomos'', a word which meant "uncut". In the early 1800s, the scientist John Dalton noticed that chemical substances seemed to combine and break down into other substances by weight in proportions that suggested that each chemical element is ultimately made up of tiny indivisible particles of consistent weight. Shortly after 1850, certain physicists developed the kinetic theory of gases and of heat, which mathematically modelled the behavior of gases by assuming that they were made of particles. In the early 20th centur ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Nonradiation Condition
Classical nonradiation conditions define the conditions according to classical electromagnetism under which a distribution of accelerating charges will not emit electromagnetic radiation. According to the Larmor formula in classical electromagnetism, a single point charge under acceleration will emit electromagnetic radiation, i.e. light. In some classical electron models a distribution of charges can however be accelerated so that no radiation is emitted. The modern derivation of these nonradiation conditions by Hermann A. Haus is based on the Fourier components of the current produced by a moving point charge. It states that a distribution of accelerated charges will radiate if and only if it has Fourier components synchronous with waves traveling at the speed of light. History Finding a nonradiating model for the electron on an atom dominated the early work on atomic models. In a planetary model of the atom, the orbiting point electron would constantly accelerate towards the n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Atomic Physics
Atomic physics is the field of physics that studies atoms as an isolated system of electrons and an atomic nucleus. Atomic physics typically refers to the study of atomic structure and the interaction between atoms. It is primarily concerned with the way in which electrons are arranged around the nucleus and the processes by which these arrangements change. This comprises ions, neutral atoms and, unless otherwise stated, it can be assumed that the term ''atom'' includes ions. The term ''atomic physics'' can be associated with nuclear power and nuclear weapons, due to the synonymous use of ''atomic'' and ''nuclear'' in standard English. Physicists distinguish between atomic physics—which deals with the atom as a system consisting of a nucleus and electrons—and nuclear physics, which studies nuclear reactions and special properties of atomic nuclei. As with many scientific fields, strict delineation can be highly contrived and atomic physics is often considered in the wider ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Abraham–Lorentz Force
In the physics of electromagnetism, the Abraham–Lorentz force (also Lorentz–Abraham force) is the recoil force on an accelerating charged particle caused by the particle emitting electromagnetic radiation by self-interaction. It is also called the radiation reaction force, radiation damping force or the self-force. It is named after the physicists Max Abraham and Hendrik Lorentz. The formula although predating the theory of special relativity, was initially calculated for non-relativistic velocity approximations was extended to arbitrary velocities by Max Abraham and was shown to be physically consistent by George Adolphus Schott. The non-relativistic form is called Lorentz self-force while the relativistic version is called Lorentz-Dirac force or Abraham–Lorentz–Dirac force. The equations are in the domain of classical physics, not quantum physics, and therefore may not be valid at distances of roughly the Compton wavelength or below. History First calculation of the ra ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


M87 Jet
M87 or M-87 may refer to: Military * M87 machine gun, a Yugoslav copy of the NSVT machine gun * M-87 Orkan, a Yugoslav rocket-artillery vehicle Transportation * Tumansky M-87, a Soviet aircraft engine * M-87 (Michigan highway), a former state highway in Michigan, US * McDonnell Douglas MD-87, a passenger airplane Other uses * Messier 87, a giant elliptical galaxy in the Virgo Cluster ** M87*, a supermassive black hole at Messier 87's core * M87 Ray (α and β), the signature move of the character Zoffy from the ''Ultra Series'' of television shows; See List of ''Ultraman Ginga'' characters * "M87", the theme song for the 2022 film '' Shin Ultraman'' by Kenshi Yonezu is a Japanese musician, singer-songwriter, record producer and illustrator who began releasing Vocaloid music under the stage name in 2009. In 2012, he debuted under his real name, releasing music with his own voice. He has sold at least 4.2 mi ...
. {{Letter-NumberCombDisambig ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lorentz Factor
The Lorentz factor or Lorentz term is a quantity expressing how much the measurements of time, length, and other physical properties change for an object while that object is moving. The expression appears in several equations in special relativity, and it arises in derivations of the Lorentz transformations. The name originates from its earlier appearance in Lorentzian electrodynamics – named after the Dutch physicist Hendrik Lorentz. It is generally denoted (the Greek lowercase letter gamma). Sometimes (especially in discussion of superluminal motion) the factor is written as (Greek uppercase-gamma) rather than . Definition The Lorentz factor is defined as :\gamma = \frac = \frac = \frac , where: *''v'' is the relative velocity between inertial reference frames, *''c'' is the ''speed of light in a vacuum'', * is the ratio of ''v'' to ''c'', *''t'' is coordinate time, * is the proper time for an observer (measuring time intervals in the observer's own frame). This is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Four-momentum
In special relativity, four-momentum (also called momentum-energy or momenergy ) is the generalization of the classical three-dimensional momentum to four-dimensional spacetime. Momentum is a vector in three dimensions; similarly four-momentum is a four-vector in spacetime. The contravariant four-momentum of a particle with relativistic energy and three-momentum , where is the particle's three-velocity and the Lorentz factor, is p = \left(p^0 , p^1 , p^2 , p^3\right) = \left(\frac E c , p_x , p_y , p_z\right). The quantity of above is ordinary non-relativistic momentum of the particle and its rest mass. The four-momentum is useful in relativistic calculations because it is a Lorentz covariant vector. This means that it is easy to keep track of how it transforms under Lorentz transformations. The above definition applies under the coordinate convention that . Some authors use the convention , which yields a modified definition with . It is also possible to define covaria ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Four-acceleration
In the theory of relativity, four-acceleration is a four-vector (vector in four-dimensional spacetime) that is analogous to classical acceleration (a three-dimensional vector, see three-acceleration in special relativity). Four-acceleration has applications in areas such as the annihilation of antiprotons, resonance of strange particles and radiation of an accelerated charge. Four-acceleration in inertial coordinates In inertial coordinates in special relativity, four-acceleration \mathbf is defined as the rate of change in four-velocity \mathbf with respect to the particle's proper time along its worldline. We can say: \begin \mathbf = \frac &= \left(\gamma_u\dot\gamma_u c,\, \gamma_u^2\mathbf a + \gamma_u\dot\gamma_u\mathbf u\right) \\ &= \left( \gamma_u^4\frac,\, \gamma_u^2\mathbf + \gamma_u^4\frac\mathbf \right) \\ &= \left( \gamma_u^4\frac,\, \gamma_u^4\left(\mathbf + \frac\right) \right), \end where * \mathbf ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]