Laplacian Of The Indicator
   HOME
*





Laplacian Of The Indicator
In mathematics, the Laplacian of the indicator of the domain ''D'' is a generalisation of the derivative of the Dirac delta function to higher dimensions, and is non-zero only on the ''surface'' of ''D''. It can be viewed as the ''surface delta prime function''. It is analogous to the second derivative of the Heaviside step function in one dimension. It can be obtained by letting the Laplace operator work on the indicator function of some domain ''D''. The Laplacian of the indicator can be thought of as having infinitely positive and negative values when evaluated very near the boundary of the domain ''D''. From a mathematical viewpoint, it is not strictly a function but a generalized function or measure. Similarly to the derivative of the Dirac delta function in one dimension, the Laplacian of the indicator only makes sense as a mathematical object when it appears under an integral sign; i.e. it is a distribution function. Just as in the formulation of distribution theory, it is i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dirac Delta Function
In mathematics, the Dirac delta distribution ( distribution), also known as the unit impulse, is a generalized function or distribution over the real numbers, whose value is zero everywhere except at zero, and whose integral over the entire real line is equal to one. The current understanding of the unit impulse is as a linear functional that maps every continuous function (e.g., f(x)) to its value at zero of its domain (f(0)), or as the weak limit of a sequence of bump functions (e.g., \delta(x) = \lim_ \frace^), which are zero over most of the real line, with a tall spike at the origin. Bump functions are thus sometimes called "approximate" or "nascent" delta distributions. The delta function was introduced by physicist Paul Dirac as a tool for the normalization of state vectors. It also has uses in probability theory and signal processing. Its validity was disputed until Laurent Schwartz developed the theory of distributions where it is defined as a linear form acting on ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Green's Identities
In mathematics, Green's identities are a set of three identities in vector calculus relating the bulk with the boundary of a region on which differential operators act. They are named after the mathematician George Green, who discovered Green's theorem. Green's first identity This identity is derived from the divergence theorem applied to the vector field while using an extension of the product rule that : Let and be scalar functions defined on some region , and suppose that is twice continuously differentiable, and is once continuously differentiable. Using the product rule above, but letting , integrate over . Then \int_U \left( \psi \, \Delta \varphi + \nabla \psi \cdot \nabla \varphi \right)\, dV = \oint_ \psi \left( \nabla \varphi \cdot \mathbf \right)\, dS=\oint_\psi\,\nabla\varphi\cdot d\mathbf where is the Laplace operator, is the boundary of region , is the outward pointing unit normal to the surface element and is the oriented surface element. This the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics Of Infinitesimals
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



MORE