LR(0)
   HOME
*



picture info

LR(0)
In computer science, LR parsers are a type of bottom-up parser that analyse deterministic context-free languages in linear time. There are several variants of LR parsers: SLR parsers, LALR parsers, Canonical LR(1) parsers, Minimal LR(1) parsers, and GLR parsers. LR parsers can be generated by a parser generator from a formal grammar defining the syntax of the language to be parsed. They are widely used for the processing of computer languages. An LR parser (Left-to-right, Rightmost derivation in reverse) reads input text from left to right without backing up (this is true for most parsers), and produces a rightmost derivation in reverse: it does a bottom-up parse – not a top-down LL parse or ad-hoc parse. The name LR is often followed by a numeric qualifier, as in LR(1) or sometimes LR(''k''). To avoid backtracking or guessing, the LR parser is allowed to peek ahead at ''k'' lookahead input symbols before deciding how to parse earlier symbols. Typically ''k'' is 1 and is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Canonical LR Parser
In computer science, a canonical LR parser or LR(1) parser is an LR(k) parser for ''k=1'', i.e. with a single lookahead terminal. The special attribute of this parser is that any LR(k) grammar with ''k>1'' can be transformed into an LR(1) grammar. However, back-substitutions are required to reduce k and as back-substitutions increase, the grammar can quickly become large, repetitive and hard to understand. LR(k) can handle all deterministic context-free languages. In the past this LR(k) parser has been avoided because of its huge memory requirements in favor of less powerful alternatives such as the LALR and the LL(1) parser. Recently, however, a "minimal LR(1) parser" whose space requirements are close to LALR parsers, is being offered by several parser generators. Like most parsers, the LR(1) parser is automatically generated by compiler-compilers like GNU Bison, MSTA, Menhir, HYACC, LRSTAR. History In 1965 Donald Knuth invented the LR(k) parser (Left to right, Rightmos ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


LALR Parser
In computer science, an LALR parser or Look-Ahead LR parser is a simplified version of a canonical LR parser, to parse a text according to a set of production rules specified by a formal grammar for a computer language. ("LR" means left-to-right, rightmost derivation.) The LALR parser was invented by Frank DeRemer in his 1969 PhD dissertation, ''Practical Translators for LR(k) languages'', in his treatment of the practical difficulties at that time of implementing LR(1) parsers. He showed that the LALR parser has more language recognition power than the LR(0) parser, while requiring the same number of states as the LR(0) parser for a language that can be recognized by both parsers. This makes the LALR parser a memory-efficient alternative to the LR(1) parser for languages that are LALR. It was also proven that there exist LR(1) languages that are not LALR. Despite this weakness, the power of the LALR parser is sufficient for many mainstream computer languages,''LR Parsing: The ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


SLR Parser
In computer science, a Simple LR or SLR parser is a type of LR parser with small parse tables and a relatively simple parser generator algorithm. As with other types of LR(1) parser, an SLR parser is quite efficient at finding the single correct bottom-up parse in a single left-to-right scan over the input stream, without guesswork or backtracking. The parser is mechanically generated from a formal grammar for the language. SLR and the more-general methods LALR parser and Canonical LR parser have identical methods and similar tables at parse time; they differ only in the mathematical grammar analysis algorithms used by the parser generator tool. SLR and LALR generators create tables of identical size and identical parser states. SLR generators accept fewer grammars than do LALR generators like yacc and Bison. Many computer languages don't readily fit the restrictions of SLR, as is. Bending the language's natural grammar into SLR grammar form requires more compromises and gr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Earley Parser
In computer science, the Earley parser is an algorithm for parsing strings that belong to a given context-free language, though (depending on the variant) it may suffer problems with certain nullable grammars. The algorithm, named after its inventor, Jay Earley, is a chart parser that uses dynamic programming; it is mainly used for parsing in computational linguistics. It was first introduced in his dissertation in 1968 (and later appeared in an abbreviated, more legible, form in a journal). Earley parsers are appealing because they can parse all context-free languages, unlike LR parsers and LL parsers, which are more typically used in compilers but which can only handle restricted classes of languages. The Earley parser executes in cubic time in the general case (n^3), where ''n'' is the length of the parsed string, quadratic time for unambiguous grammars (n^2), and linear time for all deterministic context-free grammars. It performs particularly well when the rules are wri ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Computer Science
Computer science is the study of computation, automation, and information. Computer science spans theoretical disciplines (such as algorithms, theory of computation, information theory, and automation) to practical disciplines (including the design and implementation of hardware and software). Computer science is generally considered an area of academic research and distinct from computer programming. Algorithms and data structures are central to computer science. The theory of computation concerns abstract models of computation and general classes of problems that can be solved using them. The fields of cryptography and computer security involve studying the means for secure communication and for preventing security vulnerabilities. Computer graphics and computational geometry address the generation of images. Programming language theory considers different ways to describe computational processes, and database theory concerns the management of repositories o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Operator-precedence Parser
In computer science, an operator precedence parser is a bottom-up parser that interprets an operator-precedence grammar. For example, most calculators use operator precedence parsers to convert from the human-readable infix notation relying on order of operations to a format that is optimized for evaluation such as Reverse Polish notation (RPN). Edsger Dijkstra's shunting yard algorithm is commonly used to implement operator precedence parsers. Relationship to other parsers An operator-precedence parser is a simple shift-reduce parser that is capable of parsing a subset of LR(1) grammars. More precisely, the operator-precedence parser can parse all LR(1) grammars where two consecutive nonterminals and epsilon never appear in the right-hand side of any rule. Operator-precedence parsers are not used often in practice; however they do have some properties that make them useful within a larger design. First, they are simple enough to write by hand, which is not generally the ca ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Shift-reduce Parser
A shift-reduce parser is a class of efficient, table-driven bottom-up parsing methods for computer languages and other notations formally defined by a grammar. The parsing methods most commonly used for parsing programming languages, LR parsing and its variations, are shift-reduce methods. The precedence parsers used before the invention of LR parsing are also shift-reduce methods. All shift-reduce parsers have similar outward effects, in the incremental order in which they build a parse tree or call specific output actions. Overview A shift-reduce parser scans and parses the input text in one forward pass over the text, without backing up. The parser builds up the parse tree incrementally, bottom up, and left to right, without guessing or backtracking. At every point in this pass, the parser has accumulated a list of subtrees or phrases of the input text that have been already parsed. Those subtrees are not yet joined together because the parser has not yet reached the r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Simple Precedence Parser
In computer science, a simple precedence parser is a type of bottom-up parser for context-free grammars that can be used only by simple precedence grammars. The implementation of the parser is quite similar to the generic bottom-up parser. A stack is used to store a viable prefix of a sentential form from a rightmost derivation. The symbols ⋖, ≐ and ⋗ are used to identify the pivot, and to know when to Shift or when to Reduce. Implementation * Compute the Wirth–Weber precedence relationship table for a grammar with initial symbol S. * Initialize a stack with the starting marker $. * Append an ending marker $ to the string being parsed (Input). * Until Stack equals "$ S" and Input equals "$" ** Search the table for the relationship between Top(stack) and NextToken(Input) ** if the relationship is ⋖ or ≐ *** Shift: *** Push(Stack, relationship) *** Push(Stack, NextToken(Input)) *** RemoveNextToken(Input) ** if the relationship is ⋗ *** Reduce: *** SearchProductionToRedu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Donald Knuth
Donald Ervin Knuth ( ; born January 10, 1938) is an American computer scientist, mathematician, and professor emeritus at Stanford University. He is the 1974 recipient of the ACM Turing Award, informally considered the Nobel Prize of computer science. Knuth has been called the "father of the analysis of algorithms". He is the author of the multi-volume work ''The Art of Computer Programming'' and contributed to the development of the rigorous analysis of the computational complexity of algorithms and systematized formal mathematical techniques for it. In the process, he also popularized the asymptotic notation. In addition to fundamental contributions in several branches of theoretical computer science, Knuth is the creator of the TeX computer typesetting system, the related METAFONT font definition language and rendering system, and the Computer Modern family of typefaces. As a writer and scholar, Knuth created the WEB and CWEB computer programming systems designed to encou ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Parse Tree
A parse tree or parsing tree or derivation tree or concrete syntax tree is an ordered, rooted tree that represents the syntactic structure of a string according to some context-free grammar. The term ''parse tree'' itself is used primarily in computational linguistics; in theoretical syntax, the term ''syntax tree'' is more common. Concrete syntax trees reflect the syntax of the input language, making them distinct from the abstract syntax trees used in computer programming. Unlike Reed-Kellogg sentence diagrams used for teaching grammar, parse trees do not use distinct symbol shapes for different types of constituents. Parse trees are usually constructed based on either the constituency relation of constituency grammars ( phrase structure grammars) or the dependency relation of dependency grammars. Parse trees may be generated for sentences in natural languages (see natural language processing), as well as during processing of computer languages, such as programming langua ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


LL Parsing
In computer science, an LL parser (Left-to-right, leftmost derivation) is a top-down parser for a restricted context-free language. It parses the input from Left to right, performing Leftmost derivation of the sentence. An LL parser is called an LL(''k'') parser if it uses ''k'' tokens of lookahead when parsing a sentence. A grammar is called an LL(''k'') grammar if an LL(''k'') parser can be constructed from it. A formal language is called an LL(''k'') language if it has an LL(''k'') grammar. The set of LL(''k'') languages is properly contained in that of LL(''k''+1) languages, for each ''k'' ≥ 0. A corollary of this is that not all context-free languages can be recognized by an LL(''k'') parser. An LL parser is called LL-regular (LLR) if it parses an LL-regular language. The class of LLR grammars contains every LL(k) grammar for every k. For every LLR grammar there exists an LLR parser that parses the grammar in linear time. Two nomenclative outlier parser ty ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]