LOCC
   HOME
*





LOCC
LOCC, or local operations and classical communication, is a method in quantum information theory where a local (product) operation is performed on part of the system, and where the result of that operation is "communicated" classically to another part where usually another local operation is performed conditioned on the information received. Mathematical properties The formal definition of the set of LOCC operations is complicated due to the fact that later local operations depend in general on all the previous classical communication and due to the unbounded number of communication rounds. For any finite number r\geq1 one can define \operatorname_r, the set of LOCC operations that can be achieved with r rounds of classical communication. The set becomes strictly larger whenever r is increased and care has to be taken to define the limit of infinitely many rounds. In particular, the set LOCC is not topologically closed, that is there are quantum operations that can be approximate ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


LOCC
LOCC, or local operations and classical communication, is a method in quantum information theory where a local (product) operation is performed on part of the system, and where the result of that operation is "communicated" classically to another part where usually another local operation is performed conditioned on the information received. Mathematical properties The formal definition of the set of LOCC operations is complicated due to the fact that later local operations depend in general on all the previous classical communication and due to the unbounded number of communication rounds. For any finite number r\geq1 one can define \operatorname_r, the set of LOCC operations that can be achieved with r rounds of classical communication. The set becomes strictly larger whenever r is increased and care has to be taken to define the limit of infinitely many rounds. In particular, the set LOCC is not topologically closed, that is there are quantum operations that can be approximate ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantum Entanglement
Quantum entanglement is the phenomenon that occurs when a group of particles are generated, interact, or share spatial proximity in a way such that the quantum state of each particle of the group cannot be described independently of the state of the others, including when the particles are separated by a large distance. The topic of quantum entanglement is at the heart of the disparity between classical and quantum physics: entanglement is a primary feature of quantum mechanics not present in classical mechanics. Measurements of physical properties such as position, momentum, spin, and polarization performed on entangled particles can, in some cases, be found to be perfectly correlated. For example, if a pair of entangled particles is generated such that their total spin is known to be zero, and one particle is found to have clockwise spin on a first axis, then the spin of the other particle, measured on the same axis, is found to be anticlockwise. However, this behavior gives ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Separable State
In quantum mechanics, separable states are quantum states belonging to a composite space that can be factored into individual states belonging to separate subspaces. A state is said to be entangled if it is not separable. In general, determining if a state is separable is not straightforward and the problem is classed as NP-hard. Separability of bipartite systems Consider first composite states with two degrees of freedom, referred to as ''bipartite states''. By a postulate of quantum mechanics these can be described as vectors in the tensor product space H_1\otimes H_2. In this discussion we will focus on the case of the Hilbert spaces H_1 and H_2 being finite-dimensional. Pure states Let \_^n\subset H_1 and \_^m \subset H_2 be orthonormal bases for H_1 and H_2, respectively. A basis for H_1 \otimes H_2 is then \, or in more compact notation \. From the very definition of the tensor product, any vector of norm 1, i.e. a pure state of the composite system, can be written a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hilbert Spaces
In mathematics, Hilbert spaces (named after David Hilbert) allow generalizing the methods of linear algebra and calculus from (finite-dimensional) Euclidean vector spaces to spaces that may be infinite-dimensional. Hilbert spaces arise naturally and frequently in mathematics and physics, typically as function spaces. Formally, a Hilbert space is a vector space equipped with an inner product that defines a distance function for which the space is a complete metric space. The earliest Hilbert spaces were studied from this point of view in the first decade of the 20th century by David Hilbert, Erhard Schmidt, and Frigyes Riesz. They are indispensable tools in the theories of partial differential equations, quantum mechanics, Fourier analysis (which includes applications to signal processing and heat transfer), and ergodic theory (which forms the mathematical underpinning of thermodynamics). John von Neumann coined the term ''Hilbert space'' for the abstract concept that underlies ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Partial Trace
In linear algebra and functional analysis, the partial trace is a generalization of the trace. Whereas the trace is a scalar valued function on operators, the partial trace is an operator-valued function. The partial trace has applications in quantum information and decoherence which is relevant for quantum measurement and thereby to the decoherent approaches to interpretations of quantum mechanics, including consistent histories and the relative state interpretation. Details Suppose V, W are finite-dimensional vector spaces over a field, with dimensions m and n, respectively. For any space A, let L(A) denote the space of linear operators on A. The partial trace over W is then written as \operatorname_W: \operatorname(V \otimes W) \to \operatorname(V). It is defined as follows: For T\in \operatorname(V \otimes W), let e_1, \ldots, e_m , and f_1, \ldots, f_n , be bases for ''V'' and ''W'' respectively; then ''T'' has a matrix representation : \ \quad 1 \leq k, i \leq m, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Von Neumann Entropy
In physics, the von Neumann entropy, named after John von Neumann, is an extension of the concept of Gibbs entropy from classical statistical mechanics to quantum statistical mechanics. For a quantum-mechanical system described by a density matrix , the von Neumann entropy is : S = - \operatorname(\rho \ln \rho), where \operatorname denotes the trace and ln denotes the (natural) matrix logarithm. If is written in terms of its eigenvectors , 1\rangle, , 2\rangle, , 3\rangle, \dots as : \rho = \sum_j \eta_j \left, j \right\rang \left\lang j \ , then the von Neumann entropy is merely : S = -\sum_j \eta_j \ln \eta_j . In this form, ''S'' can be seen as the information theoretic Shannon entropy. The von Neumann entropy is also used in different forms ( conditional entropies, relative entropies, etc.) in the framework of quantum information theory to characterize the entropy of entanglement. Background John von Neumann established a rigorous mathematical framework for quantum me ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Entanglement Entropy
The entropy of entanglement (or entanglement entropy) is a measure of the degree of quantum entanglement between two subsystems constituting a two-part composite quantum system. Given a pure bipartite quantum state of the composite system, it is possible to obtain a reduced density matrix describing knowledge of the state of a subsystem. The entropy of entanglement is the Von Neumann entropy of the reduced density matrix for any of the subsystems. If it is non-zero, i.e. the subsystem is in a mixed state, it indicates the two subsystems are entangled. More mathematically; if a state describing two subsystems ''A'' and ''B'' , \Psi_\rangle=, \phi_A\rangle, \phi_B\rangleis a separable state, then the reduced density matrix \rho_A=\operatorname_B, \Psi_\rangle\langle\Psi_, =, \phi_A\rangle\langle\phi_A, is a pure state. Thus, the entropy of the state is zero. Similarly, the density matrix of ''B'' would also have 0 entropy. A reduced density matrix having a non-zero entropy is there ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Majorization
In mathematics, majorization is a preorder on vectors of real numbers. Let ^_,\ i=1,\,\ldots,\,n denote the i-th largest element of the vector \mathbf\in\mathbb^n. Given \mathbf,\ \mathbf \in \mathbb^n, we say that \mathbf weakly majorizes (or dominates) \mathbf from below (or equivalently, we say that \mathbf is weakly majorized (or dominated) by \mathbf from below) denoted as \mathbf \succ_w \mathbf if \sum_^k x_^ \geq \sum_^k y_^ for all k=1,\,\dots,\,d. If in addition \sum_^d x_i^ = \sum_^d y_i^, we say that \mathbf majorizes (or dominates) \mathbf , written as \mathbf \succ \mathbf , or equivalently, we say that \mathbf is majorized (or dominated) by \mathbf. The order of the entries of the vectors \mathbf or \mathbf does not affect the majorization, e.g., the statement (1,2)\prec (0,3) is simply equivalent to (2,1)\prec (3,0). As a consequence, majorization is not a partial order, since \mathbf \succ \mathbf and \mathbf \succ \mathbf do not imply \mathbf ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Schmidt Decomposition
In linear algebra, the Schmidt decomposition (named after its originator Erhard Schmidt) refers to a particular way of expressing a vector in the tensor product of two inner product spaces. It has numerous applications in quantum information theory, for example in entanglement characterization and in state purification, and plasticity. Theorem Let H_1 and H_2 be Hilbert spaces of dimensions ''n'' and ''m'' respectively. Assume n \geq m. For any vector w in the tensor product H_1 \otimes H_2, there exist orthonormal sets \ \subset H_1 and \ \subset H_2 such that w= \sum_ ^m \alpha _i u_i \otimes v_i, where the scalars \alpha_i are real, non-negative, and unique up to re-ordering. Proof The Schmidt decomposition is essentially a restatement of the singular value decomposition in a different context. Fix orthonormal bases \ \subset H_1 and \ \subset H_2. We can identify an elementary tensor e_i \otimes f_j with the matrix e_i f_j ^\mathsf, where f_j ^\mathsf is the transpose of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quantum Nonlocality
In theoretical physics, quantum nonlocality refers to the phenomenon by which the measurement statistics of a multipartite quantum system do not admit an interpretation in terms of a local realistic theory. Quantum nonlocality has been experimentally verified under different physical assumptions. Any physical theory that aims at superseding or replacing quantum theory should account for such experiments and therefore cannot fulfill local realism; quantum nonlocality is a property of the universe that is independent of our description of nature. Quantum nonlocality does not allow for faster-than-light communication, and hence is compatible with special relativity and its universal speed limit of objects. Thus, quantum theory is local in the strict sense defined by special relativity and, as such, the term "quantum nonlocality" is sometimes considered a misnomer. Still, it prompts many of the foundational discussions concerning quantum theory. History Einstein, Podolsky and Rose ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Orthogonality
In mathematics, orthogonality is the generalization of the geometric notion of ''perpendicularity''. By extension, orthogonality is also used to refer to the separation of specific features of a system. The term also has specialized meanings in other fields including art and chemistry. Etymology The word comes from the Ancient Greek ('), meaning "upright", and ('), meaning "angle". The Ancient Greek (') and Classical Latin ' originally denoted a rectangle. Later, they came to mean a right triangle. In the 12th century, the post-classical Latin word ''orthogonalis'' came to mean a right angle or something related to a right angle. Mathematics Physics * In optics, polarization states are said to be orthogonal when they propagate independently of each other, as in vertical and horizontal linear polarization or right- and left-handed circular polarization. * In special relativity, a time axis determined by a rapidity of motion is hyperbolic-orthogonal to a space axis of simu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]