LLT Polynomial
   HOME
*





LLT Polynomial
In mathematics, an LLT polynomial is one of a family of symmetric functions introduced by Alain Lascoux, Bernard Leclerc, and Jean-Yves Thibon (1997) as ''q''-analogues of products of Schur functions. J. Haglund, M. Haiman, N. Loehr (2005) showed how to expand Macdonald polynomials in terms of LLT polynomials. Ian Grojnowski and Mark Haiman (2007, preprint) proved a positivity conjecture for LLT polynomials that combined with the previous result implies the Macdonald positivity conjecture for Macdonald polynomials In mathematics, Macdonald polynomials ''P''λ(''x''; ''t'',''q'') are a family of orthogonal symmetric polynomials in several variables, introduced by Macdonald in 1987. He later introduced a non-symmetric generalization in 1995. Macdonald origi ..., and extended the definition of LLT polynomials to arbitrary finite root systems. References *I. Grojnowski, M. Haiman, ''Affine algebras and positivity'' (preprint availablhere *J. Haglund, M. Haiman, N. LoehA Combin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Symmetric Function
In mathematics, a function of n variables is symmetric if its value is the same no matter the order of its arguments. For example, a function f\left(x_1,x_2\right) of two arguments is a symmetric function if and only if f\left(x_1,x_2\right) = f\left(x_2,x_1\right) for all x_1 and x_2 such that \left(x_1,x_2\right) and \left(x_2,x_1\right) are in the domain of f. The most commonly encountered symmetric functions are polynomial functions, which are given by the symmetric polynomials. A related notion is alternating polynomials, which change sign under an interchange of variables. Aside from polynomial functions, tensors that act as functions of several vectors can be symmetric, and in fact the space of symmetric k-tensors on a vector space V is isomorphic to the space of homogeneous polynomials of degree k on V. Symmetric functions should not be confused with even and odd functions, which have a different sort of symmetry. Symmetrization Given any function f in n variables wi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Alain Lascoux
Alain Lascoux (17 October 1944 – 20 October 2013) was a French mathematician at the University of Marne la Vallée and Nankai University. His research was primarily in algebraic combinatorics, particularly Hecke algebras and Young tableaux. Lascoux earned his doctorate in 1977 from the University of Paris. He worked for twenty years with Marcel-Paul Schützenberger on properties of the symmetric group. They wrote many articles together and had a major impact on the development of algebraic combinatorics. They succeeded in giving a combinatorial understanding of various algebraic and geometric questions in representation theory. Thus they introduced many new objects related to both fields like Schubert polynomials and Grothendieck polynomials. They were also the first to define the crystal graph structure on Young tableaux (though not under this name). Lascoux was an invited speaker at the 1998 International Congress of Mathematicians in Berlin, Germany Germany, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Q-analog
In mathematics, a ''q''-analog of a theorem, identity or expression is a generalization involving a new parameter ''q'' that returns the original theorem, identity or expression in the limit as . Typically, mathematicians are interested in ''q''-analogs that arise naturally, rather than in arbitrarily contriving ''q''-analogs of known results. The earliest ''q''-analog studied in detail is the basic hypergeometric series, which was introduced in the 19th century.Exton, H. (1983), ''q-Hypergeometric Functions and Applications'', New York: Halstead Press, Chichester: Ellis Horwood, 1983, , , ''q''-analogues are most frequently studied in the mathematical fields of combinatorics and special functions. In these settings, the limit is often formal, as is often discrete-valued (for example, it may represent a prime power). ''q''-analogs find applications in a number of areas, including the study of fractals and multi-fractal measures, and expressions for the entropy of chaotic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Schur Polynomial
In mathematics, Schur polynomials, named after Issai Schur, are certain symmetric polynomials in ''n'' variables, indexed by partitions, that generalize the elementary symmetric polynomials and the complete homogeneous symmetric polynomials. In representation theory they are the characters of polynomial irreducible representations of the general linear groups. The Schur polynomials form a linear basis for the space of all symmetric polynomials. Any product of Schur polynomials can be written as a linear combination of Schur polynomials with non-negative integral coefficients; the values of these coefficients is given combinatorially by the Littlewood–Richardson rule. More generally, skew Schur polynomials are associated with pairs of partitions and have similar properties to Schur polynomials. Definition (Jacobi's bialternant formula) Schur polynomials are indexed by integer partitions. Given a partition , where , and each is a non-negative integer, the functions a_ (x_1, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Macdonald Polynomial
In mathematics, Macdonald polynomials ''P''λ(''x''; ''t'',''q'') are a family of orthogonal symmetric polynomials in several variables, introduced by Macdonald in 1987. He later introduced a non-symmetric generalization in 1995. Macdonald originally associated his polynomials with weights λ of finite root systems and used just one variable ''t'', but later realized that it is more natural to associate them with affine root systems rather than finite root systems, in which case the variable ''t'' can be replaced by several different variables ''t''=(''t''1,...,''t''''k''), one for each of the ''k'' orbits of roots in the affine root system. The Macdonald polynomials are polynomials in ''n'' variables ''x''=(''x''1,...,''x''''n''), where ''n'' is the rank of the affine root system. They generalize many other families of orthogonal polynomials, such as Jack polynomials and Hall–Littlewood polynomials and Askey–Wilson polynomials, which in turn include most of the named 1-va ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ian Grojnowski
Ian Grojnowski is a mathematician working at the Department of Pure Mathematics and Mathematical Statistics at the University of Cambridge. Awards and honours Grojnowski was the first recipient of the Fröhlich Prize of the London Mathematical Society in 2004 for his work in representation theory and algebraic geometry Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical .... The citation readsGrojnowski's citation from the London Mathematical Society


References


[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mark Haiman
Mark David Haiman is a mathematician at the University of California at Berkeley who proved the Macdonald positivity conjecture for Macdonald polynomials. He received his Ph.D in 1984 in the Massachusetts Institute of Technology under the direction of Gian-Carlo Rota. Previous to his appointment at Berkeley, he held positions at the University of California, San Diego and the Massachusetts Institute of Technology. In 2004 he received the inaugural AMS Moore Prize. In 2012 he became a fellow of the American Mathematical Society The American Mathematical Society (AMS) is an association of professional mathematicians dedicated to the interests of mathematical research and scholarship, and serves the national and international community through its publications, meetings, ....List of Fellows of the American Mathematical Soci ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Macdonald Polynomials
In mathematics, Macdonald polynomials ''P''λ(''x''; ''t'',''q'') are a family of orthogonal symmetric polynomials in several variables, introduced by Macdonald in 1987. He later introduced a non-symmetric generalization in 1995. Macdonald originally associated his polynomials with weights λ of finite root systems and used just one variable ''t'', but later realized that it is more natural to associate them with affine root systems rather than finite root systems, in which case the variable ''t'' can be replaced by several different variables ''t''=(''t''1,...,''t''''k''), one for each of the ''k'' orbits of roots in the affine root system. The Macdonald polynomials are polynomials in ''n'' variables ''x''=(''x''1,...,''x''''n''), where ''n'' is the rank of the affine root system. They generalize many other families of orthogonal polynomials, such as Jack polynomials and Hall–Littlewood polynomials and Askey–Wilson polynomials, which in turn include most of the named 1-va ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Symmetric Functions
In mathematics, a function of n variables is symmetric if its value is the same no matter the order of its arguments. For example, a function f\left(x_1,x_2\right) of two arguments is a symmetric function if and only if f\left(x_1,x_2\right) = f\left(x_2,x_1\right) for all x_1 and x_2 such that \left(x_1,x_2\right) and \left(x_2,x_1\right) are in the domain of f. The most commonly encountered symmetric functions are polynomial functions, which are given by the symmetric polynomials. A related notion is alternating polynomials, which change sign under an interchange of variables. Aside from polynomial functions, tensors that act as functions of several vectors can be symmetric, and in fact the space of symmetric k-tensors on a vector space V is isomorphic to the space of homogeneous polynomials of degree k on V. Symmetric functions should not be confused with even and odd functions, which have a different sort of symmetry. Symmetrization Given any function f in n variables wit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Geometry
Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical problems about these sets of zeros. The fundamental objects of study in algebraic geometry are algebraic varieties, which are geometric manifestations of solutions of systems of polynomial equations. Examples of the most studied classes of algebraic varieties are: plane algebraic curves, which include lines, circles, parabolas, ellipses, hyperbolas, cubic curves like elliptic curves, and quartic curves like lemniscates and Cassini ovals. A point of the plane belongs to an algebraic curve if its coordinates satisfy a given polynomial equation. Basic questions involve the study of the points of special interest like the singular points, the inflection points and the points at infinity. More advanced questions involve the topology of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Combinatorics
Algebraic combinatorics is an area of mathematics that employs methods of abstract algebra, notably group theory and representation theory, in various combinatorial contexts and, conversely, applies combinatorial techniques to problems in algebra. History The term "algebraic combinatorics" was introduced in the late 1970s. Through the early or mid-1990s, typical combinatorial objects of interest in algebraic combinatorics either admitted a lot of symmetries (association schemes, strongly regular graphs, posets with a group action) or possessed a rich algebraic structure, frequently of representation theoretic origin (symmetric functions, Young tableaux). This period is reflected in the area 05E, ''Algebraic combinatorics'', of the AMS Mathematics Subject Classification, introduced in 1991. Scope Algebraic combinatorics has come to be seen more expansively as an area of mathematics where the interaction of combinatorial and algebraic methods is particularly strong and significa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Q-analogs
In mathematics, a ''q''-analog of a theorem, identity or expression is a generalization involving a new parameter ''q'' that returns the original theorem, identity or expression in the limit as . Typically, mathematicians are interested in ''q''-analogs that arise naturally, rather than in arbitrarily contriving ''q''-analogs of known results. The earliest ''q''-analog studied in detail is the basic hypergeometric series, which was introduced in the 19th century.Exton, H. (1983), ''q-Hypergeometric Functions and Applications'', New York: Halstead Press, Chichester: Ellis Horwood, 1983, , , ''q''-analogues are most frequently studied in the mathematical fields of combinatorics and special functions. In these settings, the limit is often formal, as is often discrete-valued (for example, it may represent a prime power). ''q''-analogs find applications in a number of areas, including the study of fractals and multi-fractal measures, and expressions for the entropy of chaotic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]