LALR(1)
   HOME
*





LALR(1)
In computer science, an LALR parser or Look-Ahead LR parser is a simplified version of a canonical LR parser, to parse a text according to a set of production rules specified by a formal grammar for a computer language. ("LR" means left-to-right, rightmost derivation.) The LALR parser was invented by Frank DeRemer in his 1969 PhD dissertation, ''Practical Translators for LR(k) languages'', in his treatment of the practical difficulties at that time of implementing LR(1) parsers. He showed that the LALR parser has more language recognition power than the LR(0) parser, while requiring the same number of states as the LR(0) parser for a language that can be recognized by both parsers. This makes the LALR parser a memory-efficient alternative to the LR(1) parser for languages that are LALR. It was also proven that there exist LR(1) languages that are not LALR. Despite this weakness, the power of the LALR parser is sufficient for many mainstream computer languages,''LR Parsing: Theory a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


LALR Parser Generator
A lookahead LR parser (LALR) generator is a software tool that reads a BNF grammar and creates an LALR parser which is capable of parsing files written in the computer language defined by the BNF grammar. LALR parsers are desirable because they are very fast and small in comparison to other types of parsers. There are other types of parser generators, such as Simple LR parser, LR parser, GLR parser, LL parser and GLL parser generators. What differentiates one from another is the type of BNF grammar which they are capable of accepting and the type of parsing algorithm which is used in the generated parser. An LALR parser generator accepts an LALR grammar as input and generates a parser that uses an LALR parsing algorithm (which is driven by LALR parser tables). In practice, LALR offers a good solution, because LALR(1) grammars are more powerful than SLR(1), and can parse most practical LL(1) grammars. LR(1) grammars are more powerful than LALR(1), but canonical LR(1) parsers ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

LR Parser
In computer science, LR parsers are a type of bottom-up parser that analyse deterministic context-free languages in linear time. There are several variants of LR parsers: SLR parsers, LALR parsers, Canonical LR(1) parsers, Minimal LR(1) parsers, and GLR parsers. LR parsers can be generated by a parser generator from a formal grammar defining the syntax of the language to be parsed. They are widely used for the processing of computer languages. An LR parser (Left-to-right, Rightmost derivation in reverse) reads input text from left to right without backing up (this is true for most parsers), and produces a rightmost derivation in reverse: it does a bottom-up parse – not a top-down LL parse or ad-hoc parse. The name LR is often followed by a numeric qualifier, as in LR(1) or sometimes LR(''k''). To avoid backtracking or guessing, the LR parser is allowed to peek ahead at ''k'' lookahead input symbols before deciding how to parse earlier symbols. Typically ''k'' is 1 and is n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Canonical LR Parser
In computer science, a canonical LR parser or LR(1) parser is an LR(k) parser for ''k=1'', i.e. with a single lookahead terminal. The special attribute of this parser is that any LR(k) grammar with ''k>1'' can be transformed into an LR(1) grammar. However, back-substitutions are required to reduce k and as back-substitutions increase, the grammar can quickly become large, repetitive and hard to understand. LR(k) can handle all deterministic context-free languages. In the past this LR(k) parser has been avoided because of its huge memory requirements in favor of less powerful alternatives such as the LALR and the LL(1) parser. Recently, however, a "minimal LR(1) parser" whose space requirements are close to LALR parsers, is being offered by several parser generators. Like most parsers, the LR(1) parser is automatically generated by compiler-compilers like GNU Bison, MSTA, Menhir, HYACC, LRSTAR. History In 1965 Donald Knuth invented the LR(k) parser (Left to right, Rightmost d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Parse
Parsing, syntax analysis, or syntactic analysis is the process of analyzing a string of symbols, either in natural language, computer languages or data structures, conforming to the rules of a formal grammar. The term ''parsing'' comes from Latin ''pars'' (''orationis''), meaning part (of speech). The term has slightly different meanings in different branches of linguistics and computer science. Traditional sentence parsing is often performed as a method of understanding the exact meaning of a sentence or word, sometimes with the aid of devices such as sentence diagrams. It usually emphasizes the importance of grammatical divisions such as subject and predicate. Within computational linguistics the term is used to refer to the formal analysis by a computer of a sentence or other string of words into its constituents, resulting in a parse tree showing their syntactic relation to each other, which may also contain semantic and other information (p-values). Some parsing algori ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lookahead (parsing)
Parsing, syntax analysis, or syntactic analysis is the process of analyzing a string of symbols, either in natural language, computer languages or data structures, conforming to the rules of a formal grammar. The term ''parsing'' comes from Latin ''pars'' (''orationis''), meaning part (of speech). The term has slightly different meanings in different branches of linguistics and computer science. Traditional sentence parsing is often performed as a method of understanding the exact meaning of a sentence or word, sometimes with the aid of devices such as sentence diagrams. It usually emphasizes the importance of grammatical divisions such as subject and predicate. Within computational linguistics the term is used to refer to the formal analysis by a computer of a sentence or other string of words into its constituents, resulting in a parse tree showing their syntactic relation to each other, which may also contain semantic and other information (p-values). Some parsing algorit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Comparison Of Parser Generators
This is a list of notable lexer generators and parser generators for various language classes. Regular languages Regular languages are a category of languages (sometimes termed Chomsky Type 3) which can be matched by a state machine (more specifically, by a deterministic finite automaton or a nondeterministic finite automaton) constructed from a regular expression. In particular, a regular language can match constructs like "A follows B", "Either A or B", "A, followed by zero or more instances of B", but cannot match constructs which require consistency between non-adjacent elements, such as "some instances of A followed by the same number of instances of B", and also cannot express the concept of recursive "nesting" ("every A is eventually followed by a matching B"). A classic example of a problem which a regular grammar cannot handle is the question of whether a given string contains correctly-nested parentheses. (This is typically handled by a Chomsky Type 2 grammar, also te ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




LL Parser
In computer science, an LL parser (Left-to-right, leftmost derivation) is a top-down parser for a restricted context-free language. It parses the input from Left to right, performing Leftmost derivation of the sentence. An LL parser is called an LL(''k'') parser if it uses ''k'' tokens of lookahead when parsing a sentence. A grammar is called an LL(''k'') grammar if an LL(''k'') parser can be constructed from it. A formal language is called an LL(''k'') language if it has an LL(''k'') grammar. The set of LL(''k'') languages is properly contained in that of LL(''k''+1) languages, for each ''k'' ≥ 0. A corollary of this is that not all context-free languages can be recognized by an LL(''k'') parser. An LL parser is called LL-regular (LLR) if it parses an LL-regular language. The class of LLR grammars contains every LL(k) grammar for every k. For every LLR grammar there exists an LLR parser that parses the grammar in linear time. Two nomenclative outlier parser typ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


GNU Bison
GNU Bison, commonly known as Bison, is a parser generator that is part of the GNU Project. Bison reads a specification in the BNF notation (a context-free language), warns about any parsing ambiguities, and generates a parser that reads sequences of tokens and decides whether the sequence conforms to the syntax specified by the grammar. The generated parsers are portable: they do not require any specific compilers. Bison by default generates LALR(1) parsers but it can also generate canonical LR, IELR(1) and GLR parsers. In POSIX mode, Bison is compatible with Yacc, but also has several extensions over this earlier program, including * Generation of counterexamples for conflicts * Location tracking (e.g., file, line, column) * Rich and internationalizable syntax error messages in the generated parsers * Customizable syntax error generation, * Reentrant parsers * Push parsers, with autocompletion * Support for named references * Several types of reports (graphical, XML) on th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


SLR Parser
In computer science, a Simple LR or SLR parser is a type of LR parser with small parse tables and a relatively simple parser generator algorithm. As with other types of LR(1) parser, an SLR parser is quite efficient at finding the single correct bottom-up parse in a single left-to-right scan over the input stream, without guesswork or backtracking. The parser is mechanically generated from a formal grammar for the language. SLR and the more-general methods LALR parser and Canonical LR parser have identical methods and similar tables at parse time; they differ only in the mathematical grammar analysis algorithms used by the parser generator tool. SLR and LALR generators create tables of identical size and identical parser states. SLR generators accept fewer grammars than do LALR generators like yacc and Bison. Many computer languages don't readily fit the restrictions of SLR, as is. Bending the language's natural grammar into SLR grammar form requires more compromises and gra ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Parser Generator
In computer science, a compiler-compiler or compiler generator is a programming tool that creates a parser, interpreter, or compiler from some form of formal description of a programming language and machine. The most common type of compiler-compiler is more precisely called a parser generator. It only handles syntactic analysis. The input of a parser generator is a grammar file, typically written in Backus–Naur form (BNF) or extended Backus–Naur form (EBNF) that defines the syntax of a target programming language. The output is the source code of a parser for the programming language. The output of the (compiled) parser source code is a parser. It may be either standalone or embedded. This parser takes as an input the source code of the target programming language source and performs some action or outputs an abstract syntax tree (AST). Parser generators do not handle the semantics of the AST, or the generation of machine code for the target machine."A Syntax Directed ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Context-free Grammar
In formal language theory, a context-free grammar (CFG) is a formal grammar whose production rules are of the form :A\ \to\ \alpha with A a ''single'' nonterminal symbol, and \alpha a string of terminals and/or nonterminals (\alpha can be empty). A formal grammar is "context-free" if its production rules can be applied regardless of the context of a nonterminal. No matter which symbols surround it, the single nonterminal on the left hand side can always be replaced by the right hand side. This is what distinguishes it from a context-sensitive grammar. A formal grammar is essentially a set of production rules that describe all possible strings in a given formal language. Production rules are simple replacements. For example, the first rule in the picture, :\langle\text\rangle \to \langle\text\rangle = \langle\text\rangle ; replaces \langle\text\rangle with \langle\text\rangle = \langle\text\rangle ;. There can be multiple replacement rules for a given nonterminal symbol. The ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

LL Grammar
Ll/ll is a digraph that occurs in several languages English In English, often represents the same sound as single : . The doubling is used to indicate that the preceding vowel is (historically) short, or that the "l" sound is to be extended longer than a single would provide (etymologically, in latinisms coming from a gemination). It is worth noting that different English language traditions use and in different words: for example the past tense form of "travel" is spelt "" in British English but "" in American English. See also: American and British English spelling differences#Doubled consonants. Welsh In Welsh, stands for a voiceless alveolar lateral fricative sound (IPA: ). This sound is very common in place names in Wales because it occurs in the word , for example, , where the appears twice, or , where (in the full name) the appears five times – with two instances of . In Welsh, is a separate ''digraph letter'' from (e.g., sorts before ). In modern Welsh ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]