HOME
*



picture info

Lunar Precession
Lunar precession is a term used for three different precession motions related to the Moon. First, it can refer to change in orientation of the lunar rotational axis with respect to a reference plane, following the normal rules of precession followed by spinning objects. In addition, the orbit of the Moon undergoes two important types of precessional motion: apsidal and nodal. Axial precession The rotational axis of the Moon also undergoes precession. Since the Moon's axial tilt is only 1.5° with respect to the ecliptic (the plane of Earth's orbit around the Sun), this effect is small. Once every 18.6 years, the lunar north pole describes a small circle around a point in the constellation Draco, while correspondingly, the lunar south pole describes a small circle around a point in the constellation Dorado. Similar to Earth, the Moon's axial precession is westwards - whereas Apsidal precession is in the same direction as the rotation (meaning apsidal precession is eastward ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lunar Standstill
A lunar standstill or lunistice is when the moon reaches its furthest north or furthest south point during the course of a month (specifically a draconic month of about 27.2 days). The declination (a celestial coordinate measured as the angle from the celestial equator, analogous to latitude) at lunar standstill varies in a cycle 18.6 years long between 18.134° (north or south) and 28.725° (north or south), due to lunar precession. These extremes are called the minor and major lunar standstills. The last minor lunar standstill was in October 2015, and the next one will be in May 2034. The last major lunar standstill was in June 2006, and the next one will be in January 2025. Presently the northern lunistice occurs when the moon is in Taurus, northern Orion, Gemini, or sometimes the southernmost part of Auriga (as at the time of a major lunistice). The southern lunistice occurs when the moon is in Sagittarius or Ophiuchus. Due to precession of the earth's axis, the northern ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lunar Month
In lunar calendars, a lunar month is the time between two successive syzygies of the same type: new moons or full moons. The precise definition varies, especially for the beginning of the month. Variations In Shona, Middle Eastern, and European traditions, the month starts when the young crescent moon first becomes visible, at evening, after conjunction with the Sun one or two days before that evening (e.g., in the Islamic calendar). In ancient Egypt, the lunar month began on the day when the waning moon could no longer be seen just before sunrise. Others run from full moon to full moon. Yet others use calculation, of varying degrees of sophistication, for example, the Hebrew calendar or the ecclesiastical lunar calendar. Calendars count integer days, so months may be 29 or 30 days in length, in some regular or irregular sequence. Lunar cycles are prominent, and calculated with great precision, in the ancient Hindu Panchangam calendar, widely used in the Indian subcon ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Astronomical Almanac
''The Astronomical Almanac''The ''Astronomical Almanac'' for the Year 2015, (United States Naval Observatory/Nautical Almanac Office, 2014) . is an almanac published by the United States Naval Observatory (USNO) and His Majesty's Nautical Almanac Office (HMNAO); it also includes data supplied by many scientists from around the world. It is considered a worldwide resource for fundamental astronomical data, often being the first publication to incorporate new International Astronomical Union resolutions. The almanac largely contains Solar System ephemeris and catalogs of selected stellar and extragalactic objects. The material appears in sections, each section addressing a specific astronomical category. The book also includes references to the material, explanations, and examples. It is available one year in advance of its date. The ''Astronomical Almanac Online'' is a companion to the printed volume. It is designed to broaden the scope of the publication, not duplicate the da ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Orbit Of The Moon
The Moon orbits Earth in the prograde direction and completes one revolution relative to the Vernal Equinox and the stars in about 27.32 days (a tropical month and sidereal month) and one revolution relative to the Sun in about 29.53 days (a synodic month). Earth and the Moon orbit about their barycentre (common centre of mass), which lies about from Earth's centre (about 73% of its radius), forming a satellite system called the Earth–Moon system. On average, the distance to the Moon is about from Earth's centre, which corresponds to about 60 Earth radii or 1.282 light-seconds. With a mean orbital velocity of 1.022 km/s (0.635 miles/s, 2,286 miles/h), the Moon covers a distance approximately its diameter, or about half a degree on the celestial sphere, each hour. The Moon differs from most satellites of other planets in that its orbit is close to the ecliptic plane instead of to its primary's (in this case, Earth's) equatorial plane. The Moon's orbital plan ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lunar Theory
Lunar theory attempts to account for the motions of the Moon. There are many small variations (or perturbations) in the Moon's motion, and many attempts have been made to account for them. After centuries of being problematic, lunar motion can now be modeled to a very high degree of accuracy (see section Modern developments). Lunar theory includes: * the background of general theory; including mathematical techniques used to analyze the Moon's motion and to generate formulae and algorithms for predicting its movements; and also * quantitative formulae, algorithms, and geometrical diagrams that may be used to compute the Moon's position for a given time; often by the help of tables based on the algorithms. Lunar theory has a history of over 2000 years of investigation. Its more modern developments have been used over the last three centuries for fundamental scientific and technological purposes, and are still being used in that way. Applications Applications of lunar theory have in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sidereal Year
A sidereal year (, ; ), also called a sidereal orbital period, is the time that Earth or another planetary body takes to orbit the Sun once with respect to the fixed stars. Hence, for Earth, it is also the time taken for the Sun to return to the same position relative to Earth with respect to the fixed stars after apparently travelling once around the ecliptic. It equals for the J2000.0 epoch. The sidereal year differs from the solar year, "the period of time required for the ecliptic longitude of the Sun to increase 360 degrees", due to the precession of the equinoxes. The sidereal year is 20 min 24.5 s longer than the mean tropical year at J2000.0 . At present, the rate of axial precession corresponds to a period of 25,772 years, so sidereal year is longer than tropical year by 1,224.5 seconds (20 min 24.5 s, ~365.24219*86400/25772). Before the discovery of the precession of the equinoxes by Hipparchus in the Hellenistic period, the difference between sidereal ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Eclipse Cycle
Eclipses may occur repeatedly, separated by certain intervals of time: these intervals are called eclipse cycles. The series of eclipses separated by a repeat of one of these intervals is called an eclipse series. Eclipse conditions Eclipses may occur when Earth and the Moon are aligned with the Sun, and the shadow of one body projected by the Sun falls on the other. So at new moon, when the Moon is in conjunction with the Sun, the Moon may pass in front of the Sun as viewed from a narrow region on the surface of Earth and cause a solar eclipse. At full moon, when the Moon is in opposition to the Sun, the Moon may pass through the shadow of Earth, and a lunar eclipse is visible from the night half of Earth. The conjunction and opposition of the Moon together have a special name: syzygy (Greek for "junction"), because of the importance of these lunar phases. An eclipse does not occur at every new or full moon, because the plane of the Moon's orbit around Earth is tilt ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Nodal Period
The nodal period (or draconic period) of a satellite is the time interval between successive passages of the satellite through either of its orbital nodes, typically the ascending node. This type of orbital period applies to artificial satellites, like those that monitor weather on Earth, and natural satellites like the Moon. It is distinct from the sidereal period, which measures the period with respect to reference stars seemingly fixed onto a spherical background, since the location of a satellite's nodes precess over time. For example, the nodal period of the Moon is 27.2122 days (one draconic month), while its sidereal period is 27.3217 days (one sidereal month). Near-Earth satellites The oblate figure of the Earth has important effects of the orbits of near-Earth satellites. An expression for the nodal period () of a near circular orbit, such that the eccentricity () is almost but not equal to zero, is the following: : T_n = \frac \left( 1 - \frac - \frac \right) whe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Draconic Month
In lunar calendars, a lunar month is the time between two successive syzygies of the same type: new moons or full moons. The precise definition varies, especially for the beginning of the month. Variations In Shona, Middle Eastern, and European traditions, the month starts when the young crescent moon first becomes visible, at evening, after conjunction with the Sun one or two days before that evening (e.g., in the Islamic calendar). In ancient Egypt, the lunar month began on the day when the waning moon could no longer be seen just before sunrise. Others run from full moon to full moon. Yet others use calculation, of varying degrees of sophistication, for example, the Hebrew calendar or the ecclesiastical lunar calendar. Calendars count integer days, so months may be 29 or 30 days in length, in some regular or irregular sequence. Lunar cycles are prominent, and calculated with great precision, in the ancient Hindu Panchangam calendar, widely used in the Indian subcon ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

March Equinox
The March equinox or northward equinox is the equinox on the Earth when the subsolar point appears to leave the Southern Hemisphere and cross the celestial equator, heading northward as seen from Earth. The March equinox is known as the vernal equinox (spring equinox) in the Northern Hemisphere and as the autumnal equinox in the Southern Hemisphere. On the Gregorian calendar, the northward equinox can occur as early as 19 March or as late as 21 March at 0° longitude. For a common year the computed time slippage is about 5 hours 49 minutes ''later'' than the previous year, and for a leap year about 18 hours 11 minutes ''earlier'' than the previous year. Balancing the increases of the common years against the losses of the leap years keeps the calendar date of the March equinox from drifting more than one day from 20 March each year. The March equinox may be taken to mark the beginning of astronomical spring and the end of astronomical winter in the Northern Hemisphere ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Orbital Node
An orbital node is either of the two points where an orbit intersects a plane of reference to which it is inclined. A non-inclined orbit, which is contained in the reference plane, has no nodes. Planes of reference Common planes of reference include the following: * For a geocentric orbit, Earth's equatorial plane. In this case, non-inclined orbits are called ''equatorial''. * For a heliocentric orbit, the ecliptic or invariable plane. In this case, non-inclined orbits are called ''ecliptic''. * For an orbit outside the Solar System, the plane through the primary perpendicular to a line through the observer and the primary (called the '' plane of the sky''). Node distinction If a reference direction from one side of the plane of reference to the other is defined, the two nodes can be distinguished. For geocentric and heliocentric orbits, the ascending node (or north node) is where the orbiting object moves north through the plane of reference, and the descending node ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Nodal Precession
Nodal precession is the precession of the orbital plane of a satellite around the rotational axis of an astronomical body such as Earth. This precession is due to the non-spherical nature of a rotating body, which creates a non-uniform gravitational field. The following discussion relates to low Earth orbit of artificial satellites, which have no measurable effect on the motion of Earth. The nodal precession of more massive, natural satellites like the Moon is more complex. Around a spherical body, an orbital plane would remain fixed in space around the gravitational primary body. However, most bodies rotate, which causes an equatorial bulge. This bulge creates a gravitational effect that causes orbits to precess around the rotational axis of the primary body. The direction of precession is opposite the direction of revolution. For a typical prograde orbit around Earth (that is, in the direction of primary body's rotation), the longitude of the ascending node decreases, that is the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]