HOME





List Of Representation Theory Topics
This is a list of representation theory topics, by Wikipedia page. See also list of harmonic analysis topics, which is more directed towards the mathematical analysis aspects of representation theory. See also: Glossary of representation theory General representation theory * Linear representation **Unitary representation *Trivial representation *Irreducible representation **Semisimple * Complex representation * Real representation * Quaternionic representation * Pseudo-real representation * Symplectic representation *Schur's lemma * Restricted representation Representation theory of groups *Group representation **Group ring *Maschke's theorem * Regular representation *Character (mathematics) * Character theory * Class function *Representation theory of finite groups **Modular representation theory * Frobenius reciprocity ** Restricted representation **Induced representation *Peter–Weyl theorem * Young tableau * Spherical harmonic *Hecke operator * Representation theory of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Representation Theory
Representation theory is a branch of mathematics that studies abstract algebra, abstract algebraic structures by ''representing'' their element (set theory), elements as linear transformations of vector spaces, and studies Module (mathematics), modules over these abstract algebraic structures. In essence, a representation makes an abstract algebraic object more concrete by describing its elements by matrix (mathematics), matrices and their algebraic operations (for example, matrix addition, matrix multiplication). The algebraic objects amenable to such a description include group (mathematics), groups, associative algebras and Lie algebras. The most prominent of these (and historically the first) is the group representation, representation theory of groups, in which elements of a group are represented by invertible matrices such that the group operation is matrix multiplication. Representation theory is a useful method because it reduces problems in abstract algebra to problems ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Group Representation
In the mathematical field of representation theory, group representations describe abstract groups in terms of bijective linear transformations of a vector space to itself (i.e. vector space automorphisms); in particular, they can be used to represent group elements as invertible matrices so that the group operation can be represented by matrix multiplication. In chemistry, a group representation can relate mathematical group elements to symmetric rotations and reflections of molecules. Representations of groups allow many group-theoretic problems to be reduced to problems in linear algebra. In physics, they describe how the symmetry group of a physical system affects the solutions of equations describing that system. The term ''representation of a group'' is also used in a more general sense to mean any "description" of a group as a group of transformations of some mathematical object. More formally, a "representation" means a homomorphism from the group to the autom ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Spherical Harmonic
In mathematics and Outline of physical science, physical science, spherical harmonics are special functions defined on the surface of a sphere. They are often employed in solving partial differential equations in many scientific fields. The table of spherical harmonics contains a list of common spherical harmonics. Since the spherical harmonics form a complete set of orthogonal functions and thus an orthonormal basis, every function defined on the surface of a sphere can be written as a sum of these spherical harmonics. This is similar to periodic functions defined on a circle that can be expressed as a sum of Trigonometric functions, circular functions (sines and cosines) via Fourier series. Like the sines and cosines in Fourier series, the spherical harmonics may be organized by (spatial) angular frequency, as seen in the rows of functions in the illustration on the right. Further, spherical harmonics are basis functions for irreducible representations of Rotation group SO(3), ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Young Tableau
In mathematics, a Young tableau (; plural: tableaux) is a combinatorial object useful in representation theory and Schubert calculus. It provides a convenient way to describe the group representations of the symmetric and general linear groups and to study their properties. Young tableaux were introduced by Alfred Young, a mathematician at Cambridge University, in 1900. They were then applied to the study of the symmetric group by Georg Frobenius in 1903. Their theory was further developed by many mathematicians, including Percy MacMahon, W. V. D. Hodge, G. de B. Robinson, Gian-Carlo Rota, Alain Lascoux, Marcel-Paul Schützenberger and Richard P. Stanley. Definitions ''Note: this article uses the English convention for displaying Young diagrams and tableaux''. Diagrams A Young diagram (also called a Ferrers diagram, particularly when represented using dots) is a finite collection of boxes, or cells, arranged in left-justified rows, with the row lengths in non-incre ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Peter–Weyl Theorem
In mathematics, the Peter–Weyl theorem is a basic result in the theory of harmonic analysis, applying to topological groups that are Compact group, compact, but are not necessarily Abelian group, abelian. It was initially proved by Hermann Weyl, with his student Fritz Peter, in the setting of a compact topological group ''G'' . The theorem is a collection of results generalizing the significant facts about the decomposition of the regular representation of any finite group, as discovered by Ferdinand Georg Frobenius and Issai Schur. Let ''G'' be a compact group. The theorem has three parts. The first part states that the matrix coefficients of irreducible representations of ''G'' are dense in the space ''C''(''G'') of continuous complex-valued functions on ''G'', and thus also in the space ''L''2(''G'') of square-integrable functions. The second part asserts the complete reducibility of unitary representations of ''G''. The third part then asserts that the regular representati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Induced Representation
In group theory, the induced representation is a group representation, representation of a group, , which is constructed using a known representation of a subgroup . Given a representation of '','' the induced representation is, in a sense, the "most general" representation of that extends the given one. Since it is often easier to find representations of the smaller group than of '','' the operation of forming induced representations is an important tool to construct new representations''.'' Induced representations were initially defined by Ferdinand Georg Frobenius, Frobenius, for linear representations of finite groups. The idea is by no means limited to the case of finite groups, but the theory in that case is particularly well-behaved. Constructions Algebraic Let be a finite group and any subgroup of . Furthermore let be a representation of . Let be the Index of a subgroup, index of in and let be a full set of representatives in of the Coset, left cosets in . Th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Frobenius Reciprocity
In mathematics, and in particular representation theory, Frobenius reciprocity is a theorem expressing a duality between the process of restricting and inducting. It can be used to leverage knowledge about representations of a subgroup to find and classify representations of "large" groups that contain them. It is named for Ferdinand Georg Frobenius, the inventor of the representation theory of finite groups. Statement Character theory The theorem was originally stated in terms of character theory. Let be a finite group with a subgroup , let \operatorname_H^G denote the restriction of a character, or more generally, class function of to , and let \operatorname_H^G denote the induced class function of a given class function on . For any finite group , there is an inner product \langle -,-\rangle_A on the vector space of class functions A\to\mathbb (described in detail in the article Schur orthogonality relations). Now, for any class functions \psi:H\to\mathbb and \varphi: ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Modular Representation Theory
Modular representation theory is a branch of mathematics, and is the part of representation theory that studies linear representations of finite groups over a field ''K'' of positive characteristic ''p'', necessarily a prime number. As well as having applications to group theory, modular representations arise naturally in other branches of mathematics, such as algebraic geometry, coding theory, combinatorics and number theory. Within finite group theory, character-theoretic results proved by Richard Brauer using modular representation theory played an important role in early progress towards the classification of finite simple groups, especially for simple groups whose characterization was not amenable to purely group-theoretic methods because their Sylow 2-subgroups were too small in an appropriate sense. Also, a general result on embedding of elements of order 2 in finite groups called the Z* theorem, proved by George Glauberman using the theory developed by Brauer, was par ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Representation Theory Of Finite Groups
The representation theory of groups is a part of mathematics which examines how groups act on given structures. Here the focus is in particular on operations of groups on vector spaces. Nevertheless, groups acting on other groups or on sets are also considered. For more details, please refer to the section on permutation representations. Other than a few marked exceptions, only finite groups will be considered in this article. We will also restrict ourselves to vector spaces over fields of characteristic zero. Because the theory of algebraically closed fields of characteristic zero is complete, a theory valid for a special algebraically closed field of characteristic zero is also valid for every other algebraically closed field of characteristic zero. Thus, without loss of generality, we can study vector spaces over \Complex. Representation theory is used in many parts of mathematics, as well as in quantum chemistry and physics. Among other things it is used in algebra to e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Class Function
In mathematics, especially in the fields of group theory and representation theory of groups, a class function is a function on a group ''G'' that is constant on the conjugacy classes of ''G''. In other words, it is invariant under the conjugation map on ''G''. Such functions play a basic role in representation theory. Characters The character of a linear representation of ''G'' over a field ''K'' is always a class function with values in ''K''. The class functions form the center of the group ring ''K'' 'G'' Here a class function ''f'' is identified with the element \sum_ f(g) g. Inner products The set of class functions of a group with values in a field form a -vector space. If is finite and the characteristic of the field does not divide the order of , then there is an inner product defined on this space defined by \langle \phi , \psi \rangle = \frac \sum_ \phi(g) \overline, where denotes the order of and the overbar denotes conjugation in the field . The ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Character Theory
In mathematics, more specifically in group theory, the character of a group representation is a function on the group that associates to each group element the trace of the corresponding matrix. The character carries the essential information about the representation in a more condensed form. Georg Frobenius initially developed representation theory of finite groups entirely based on the characters, and without any explicit matrix realization of representations themselves. This is possible because a complex representation of a finite group is determined (up to isomorphism) by its character. The situation with representations over a field of positive characteristic, so-called "modular representations", is more delicate, but Richard Brauer developed a powerful theory of characters in this case as well. Many deep theorems on the structure of finite groups use characters of modular representations. Applications Characters of irreducible representations encode many important ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Character (mathematics)
In mathematics, a character is (most commonly) a special kind of function from a group to a field (such as the complex numbers). There are at least two distinct, but overlapping meanings. Other uses of the word "character" are almost always qualified. Multiplicative character A multiplicative character (or linear character, or simply character) on a group ''G'' is a group homomorphism from ''G'' to the multiplicative group of a field , usually the field of complex numbers. If ''G'' is any group, then the set Ch(''G'') of these morphisms forms an abelian group under pointwise multiplication. This group is referred to as the character group of ''G''. Sometimes only ''unitary'' characters are considered (thus the image is in the unit circle); other such homomorphisms are then called ''quasi-characters''. Dirichlet characters can be seen as a special case of this definition. Multiplicative characters are linearly independent, i.e. if \chi_1,\chi_2, \ldots , \chi_n are ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]