HOME
*





List Of Probability Topics
This is a list of probability topics, by Wikipedia page. It overlaps with the (alphabetical) list of statistical topics. There are also the outline of probability and catalog of articles in probability theory. For distributions, see List of probability distributions. For journals, see list of probability journals. For contributors to the field, see list of mathematical probabilists and list of statisticians. General aspects * Probability * Randomness, Pseudorandomness, Quasirandomness * Randomization, hardware random number generator * Random number generation * Random sequence * Uncertainty * Statistical dispersion * Observational error * Equiprobable ** Equipossible * Average * Probability interpretations * Markovian * Statistical regularity * Central tendency * Bean machine * Relative frequency * Frequency probability * Maximum likelihood * Bayesian probability * Principle of indifference * Credal set * Cox's theorem * Principle of maximum entropy * Information entropy * Urn ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


List Of Statistical Topics
0–9 * 1.96 *2SLS (two-stage least squares) redirects to instrumental variable *3SLS – see three-stage least squares *68–95–99.7 rule *100-year flood A *A priori probability *Abductive reasoning *Absolute deviation *Absolute risk reduction *Absorbing Markov chain *ABX test * Accelerated failure time model *Acceptable quality limit *Acceptance sampling *Accidental sampling *Accuracy and precision * Accuracy paradox * Acquiescence bias * Actuarial science *Adapted process * Adaptive estimator * Additive Markov chain *Additive model *Additive smoothing *Additive white Gaussian noise *Adjusted Rand index – see Rand index (subsection) * ADMB software *Admissible decision rule *Age adjustment * Age-standardized mortality rate *Age stratification *Aggregate data * Aggregate pattern *Akaike information criterion *Algebra of random variables *Algebraic statistics *Algorithmic inference *Algorithms for calculating variance *All models are wrong *All-pairs testing * Allan varia ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Observational Error
Observational error (or measurement error) is the difference between a measured value of a quantity and its true value.Dodge, Y. (2003) ''The Oxford Dictionary of Statistical Terms'', OUP. In statistics, an error is not necessarily a " mistake". Variability is an inherent part of the results of measurements and of the measurement process. Measurement errors can be divided into two components: ''random'' and ''systematic''. Random errors are errors in measurement that lead to measurable values being inconsistent when repeated measurements of a constant attribute or quantity are taken. Systematic errors are errors that are not determined by chance but are introduced by repeatable processes inherent to the system. Systematic error may also refer to an error with a non-zero mean, the effect of which is not reduced when observations are averaged. Measurement errors can be summarized in terms of accuracy and precision. Measurement error should not be confused with measurement unce ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Principle Of Indifference
The principle of indifference (also called principle of insufficient reason) is a rule for assigning epistemic probabilities. The principle of indifference states that in the absence of any relevant evidence, agents should distribute their credence (or 'degrees of belief') equally among all the possible outcomes under consideration. In Bayesian probability, this is the simplest non-informative prior. The principle of indifference is meaningless under the frequency interpretation of probability, in which probabilities are relative frequencies rather than degrees of belief in uncertain propositions, conditional upon state information. Examples The textbook examples for the application of the principle of indifference are coins, dice, and cards. In a macroscopic system, at least, it must be assumed that the physical laws that govern the system are not known well enough to predict the outcome. As observed some centuries ago by John Arbuthnot (in the preface of ''Of the Laws of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Bayesian Probability
Bayesian probability is an Probability interpretations, interpretation of the concept of probability, in which, instead of frequentist probability, frequency or propensity probability, propensity of some phenomenon, probability is interpreted as reasonable expectation representing a state of knowledge or as quantification of a personal belief. The Bayesian interpretation of probability can be seen as an extension of propositional logic that enables reasoning with Hypothesis, hypotheses; that is, with propositions whose truth value, truth or falsity is unknown. In the Bayesian view, a probability is assigned to a hypothesis, whereas under frequentist inference, a hypothesis is typically tested without being assigned a probability. Bayesian probability belongs to the category of evidential probabilities; to evaluate the probability of a hypothesis, the Bayesian probabilist specifies a prior probability. This, in turn, is then updated to a posterior probability in the light of new, re ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Maximum Likelihood
In statistics, maximum likelihood estimation (MLE) is a method of estimation theory, estimating the Statistical parameter, parameters of an assumed probability distribution, given some observed data. This is achieved by Mathematical optimization, maximizing a likelihood function so that, under the assumed statistical model, the Realization (probability), observed data is most probable. The point estimate, point in the parameter space that maximizes the likelihood function is called the maximum likelihood estimate. The logic of maximum likelihood is both intuitive and flexible, and as such the method has become a dominant means of statistical inference. If the likelihood function is Differentiable function, differentiable, the derivative test for finding maxima can be applied. In some cases, the first-order conditions of the likelihood function can be solved analytically; for instance, the ordinary least squares estimator for a linear regression model maximizes the likelihood when ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Frequency Probability
Frequentist probability or frequentism is an interpretation of probability; it defines an event's probability as the limit of a sequence, limit of its relative Frequency_(statistics), frequency in many trials (the long-run probability). Probabilities can be found (in principle) by a repeatable objective process (and are thus ideally devoid of opinion). The continued use of frequentist methods in scientific inference, however, has been called into question. The development of the frequentist account was motivated by the problems and paradoxes of the previously dominant viewpoint, the Classical definition of probability, classical interpretation. In the classical interpretation, probability was defined in terms of the principle of indifference, based on the natural symmetry of a problem, so, ''e.g.'' the probabilities of dice games arise from the natural symmetric 6-sidedness of the cube. This classical interpretation stumbled at any statistical problem that has no natural symmetr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Relative Frequency
In statistics, the frequency (or absolute frequency) of an event i is the number n_i of times the observation has occurred/recorded in an experiment or study. These frequencies are often depicted graphically or in tabular form. Types The cumulative frequency is the total of the absolute frequencies of all events at or below a certain point in an ordered list of events. The (or empirical probability) of an event is the absolute frequency normalized by the total number of events: : f_i = \frac = \frac. The values of f_i for all events i can be plotted to produce a frequency distribution. In the case when n_i = 0 for certain i, pseudocounts can be added. Depicting frequency distributions A frequency distribution shows us a summarized grouping of data divided into mutually exclusive classes and the number of occurrences in a class. It is a way of showing unorganized data notably to show results of an election, income of people for a certain region, sales of a product within ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bean Machine
The Galton board, also known as the Galton box or quincunx or bean machine, is a device invented by Sir Francis Galton to demonstrate the central limit theorem, in particular that with sufficient sample size the binomial distribution approximates a normal distribution. Among its applications, it afforded insight into regression to the mean or "reversion to mediocrity". Description The Galton board consists of a vertical board with interleaved rows of pegs. Beads are dropped from the top and, when the device is level, bounce either left or right as they hit the pegs. Eventually they are collected into bins at the bottom, where the height of bead columns accumulated in the bins approximate a bell curve. Overlaying Pascal's triangle onto the pins shows the number of different paths that can be taken to get to each bin. Large-scale working models of this device created by Charles and Ray Eames can be seen in the '' Mathematica: A World of Numbers... and Beyond'' exhibits permanent ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Central Tendency
In statistics, a central tendency (or measure of central tendency) is a central or typical value for a probability distribution.Weisberg H.F (1992) ''Central Tendency and Variability'', Sage University Paper Series on Quantitative Applications in the Social Sciences, p.2 Colloquially, measures of central tendency are often called ''averages.'' The term ''central tendency'' dates from the late 1920s. The most common measures of central tendency are the arithmetic mean, the median, and the mode. A middle tendency can be calculated for either a finite set of values or for a theoretical distribution, such as the normal distribution. Occasionally authors use central tendency to denote "the tendency of quantitative data to cluster around some central value."Upton, G.; Cook, I. (2008) ''Oxford Dictionary of Statistics'', OUP (entry for "central tendency")Dodge, Y. (2003) ''The Oxford Dictionary of Statistical Terms'', OUP for International Statistical Institute. (entry for "ce ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Statistical Regularity
Statistical regularity is a notion in statistics and probability theory that random events exhibit regularity when repeated enough times or that enough sufficiently similar random events exhibit regularity. It is an umbrella term that covers the law of large numbers, all central limit theorems and ergodic theorems. If one throws a die once, it is difficult to predict the outcome, but if one repeats this experiment many times, one will see that the number of times each result occurs divided by the number of throws will eventually stabilize towards a specific value. Repeating a series of trials will produce similar, but not identical, results for each series: the average, the standard deviation and other distributional characteristics will be around the same for each series of trials. The notion is used in games of chance, demographic statistics, quality control of a manufacturing process, and in many other parts of our lives. Observations of this phenomenon provided the initial mo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Markovian (other)
Markovian is an adjective that may describe: * In probability theory and statistics, subjects named for Andrey Markov: ** A Markov chain or Markov process, a stochastic model describing a sequence of possible events ** The Markov property, the memoryless property of a stochastic process * The Markovians, an extinct god-like species in Jack L. Chalker's ''Well World'' series of novels * Markovian Parallax Denigrate, references a mysterious series of Usenet messages See also * Markov Markov (Bulgarian, russian: Марков), Markova, and Markoff are common surnames used in Russia and Bulgaria. Notable people with the name include: Academics *Ivana Markova (born 1938), Czechoslovak-British emeritus professor of psychology at t ...
(surname) {{disambiguation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Probability Interpretations
The word probability has been used in a variety of ways since it was first applied to the mathematical study of games of chance. Does probability measure the real, physical, tendency of something to occur, or is it a measure of how strongly one believes it will occur, or does it draw on both these elements? In answering such questions, mathematicians interpret the probability values of probability theory. There are two broad categories The taxonomy of probability interpretations given here is similar to that of the longer and more complete Interpretations of Probability article in the online Stanford Encyclopedia of Philosophy. References to that article include a parenthetic section number where appropriate. A partial outline of that article: * Section 2: Criteria of adequacy for the interpretations of probability * Section 3: ** 3.1 Classical Probability ** 3.2 Logical Probability ** 3.3 Subjective Probability ** 3.4 Frequency Interpretations ** 3.5 Propensity Interpretations "T ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]