HOME
*





List Of Polynomial Topics
This is a list of polynomial topics, by Wikipedia page. See also trigonometric polynomial, list of algebraic geometry topics. Terminology *Degree: The maximum exponents among the monomials. *Factor: An expression being multiplied. * Linear factor: A factor of degree one. * Coefficient: An expression multiplying one of the monomials of the polynomial. * Root (or zero) of a polynomial: Given a polynomial ''p''(''x''), the ''x'' values that satisfy ''p''(''x'') = 0 are called roots (or zeroes) of the polynomial ''p''. * Graphing **End behaviour – **Concavity – **Orientation – ** Tangency point – **Inflection point – Point where concavity changes. Basics *Polynomial * Coefficient *Monomial *Polynomial long division *Synthetic division *Polynomial factorization * Rational function *Partial fraction ** Partial fraction decomposition over R * Vieta's formulas *Integer-valued polynomial *Algebraic equation *Factor theorem *Polynomial remainder theor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Polynomial
In mathematics, a polynomial is an expression consisting of indeterminates (also called variables) and coefficients, that involves only the operations of addition, subtraction, multiplication, and positive-integer powers of variables. An example of a polynomial of a single indeterminate is . An example with three indeterminates is . Polynomials appear in many areas of mathematics and science. For example, they are used to form polynomial equations, which encode a wide range of problems, from elementary word problems to complicated scientific problems; they are used to define polynomial functions, which appear in settings ranging from basic chemistry and physics to economics and social science; they are used in calculus and numerical analysis to approximate other functions. In advanced mathematics, polynomials are used to construct polynomial rings and algebraic varieties, which are central concepts in algebra and algebraic geometry. Etymology The word ''polynomial'' join ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Rational Function
In mathematics, a rational function is any function that can be defined by a rational fraction, which is an algebraic fraction such that both the numerator and the denominator are polynomials. The coefficients of the polynomials need not be rational numbers; they may be taken in any field ''K''. In this case, one speaks of a rational function and a rational fraction ''over K''. The values of the variables may be taken in any field ''L'' containing ''K''. Then the domain of the function is the set of the values of the variables for which the denominator is not zero, and the codomain is ''L''. The set of rational functions over a field ''K'' is a field, the field of fractions of the ring of the polynomial functions over ''K''. Definitions A function f(x) is called a rational function if and only if it can be written in the form : f(x) = \frac where P\, and Q\, are polynomial functions of x\, and Q\, is not the zero function. The domain of f\, is the set of all values of x\ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Theory Of Equations
In algebra, the theory of equations is the study of algebraic equations (also called "polynomial equations"), which are equations defined by a polynomial. The main problem of the theory of equations was to know when an algebraic equation has an algebraic solution. This problem was completely solved in 1830 by Évariste Galois, by introducing what is now called Galois theory. Before Galois, there was no clear distinction between the "theory of equations" and "algebra". Since then algebra has been dramatically enlarged to include many new subareas, and the theory of algebraic equations receives much less attention. Thus, the term "theory of equations" is mainly used in the context of the history of mathematics, to avoid confusion between old and new meanings of "algebra". History Until the end of the 19th century, "theory of equations" was almost synonymous with "algebra". For a long time, the main problem was to find the solutions of a single non-linear polynomial equation in a s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Polynomial SOS
In mathematics, a form (i.e. a homogeneous polynomial) ''h''(''x'') of degree 2''m'' in the real ''n''-dimensional vector ''x'' is sum of squares of forms (SOS) if and only if there exist forms g_1(x),\ldots,g_k(x) of degree ''m'' such that h(x) = \sum_^k g_i(x)^2 . Every form that is SOS is also a positive polynomial, and although the converse is not always true, Hilbert proved that for ''n'' = 2, 2''m'' = 2 or ''n'' = 3 and 2''m'' = 4 a form is SOS if and only if it is positive. The same is also valid for the analog problem on positive ''symmetric'' forms. Although not every form can be represented as SOS, explicit sufficient conditions for a form to be SOS have been found. Moreover, every real nonnegative form can be approximated as closely as desired (in the l_1-norm of its coefficient vector) by a sequence of forms \ that are SOS. Square matricial representation (SMR) To establish whether a form is SOS amounts to solving a convex optimization problem. Indeed, any can be ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Homogeneous Polynomial
In mathematics, a homogeneous polynomial, sometimes called quantic in older texts, is a polynomial whose nonzero terms all have the same degree. For example, x^5 + 2 x^3 y^2 + 9 x y^4 is a homogeneous polynomial of degree 5, in two variables; the sum of the exponents in each term is always 5. The polynomial x^3 + 3 x^2 y + z^7 is not homogeneous, because the sum of exponents does not match from term to term. The function defined by a homogeneous polynomial is always a homogeneous function. An algebraic form, or simply form, is a function defined by a homogeneous polynomial. A binary form is a form in two variables. A ''form'' is also a function defined on a vector space, which may be expressed as a homogeneous function of the coordinates over any basis. A polynomial of degree 0 is always homogeneous; it is simply an element of the field or ring of the coefficients, usually called a constant or a scalar. A form of degree 1 is a linear form. A form of degree 2 is a quadratic fo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Symmetric Function
In mathematics, a function of n variables is symmetric if its value is the same no matter the order of its arguments. For example, a function f\left(x_1,x_2\right) of two arguments is a symmetric function if and only if f\left(x_1,x_2\right) = f\left(x_2,x_1\right) for all x_1 and x_2 such that \left(x_1,x_2\right) and \left(x_2,x_1\right) are in the domain of f. The most commonly encountered symmetric functions are polynomial functions, which are given by the symmetric polynomials. A related notion is alternating polynomials, which change sign under an interchange of variables. Aside from polynomial functions, tensors that act as functions of several vectors can be symmetric, and in fact the space of symmetric k-tensors on a vector space V is isomorphic to the space of homogeneous polynomials of degree k on V. Symmetric functions should not be confused with even and odd functions, which have a different sort of symmetry. Symmetrization Given any function f in n variables wi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Greatest Common Divisior Of Two Polynomials
In algebra, the greatest common divisor (frequently abbreviated as GCD) of two polynomials is a polynomial, of the highest possible degree, that is a factor of both the two original polynomials. This concept is analogous to the greatest common divisor of two integers. In the important case of univariate polynomials over a field the polynomial GCD may be computed, like for the integer GCD, by the Euclidean algorithm using polynomial long division, long division. The polynomial GCD is defined only up to the multiplication by an invertible constant. The similarity between the integer GCD and the polynomial GCD allows extending to univariate polynomials all the properties that may be deduced from the Euclidean algorithm and Euclidean division. Moreover, the polynomial GCD has specific properties that make it a fundamental notion in various areas of algebra. Typically, the root of a function, roots of the GCD of two polynomials are the common roots of the two polynomials, and this pro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Polynomial Ring
In mathematics, especially in the field of algebra, a polynomial ring or polynomial algebra is a ring (which is also a commutative algebra) formed from the set of polynomials in one or more indeterminates (traditionally also called variables) with coefficients in another ring, often a field. Often, the term "polynomial ring" refers implicitly to the special case of a polynomial ring in one indeterminate over a field. The importance of such polynomial rings relies on the high number of properties that they have in common with the ring of the integers. Polynomial rings occur and are often fundamental in many parts of mathematics such as number theory, commutative algebra, and algebraic geometry. In ring theory, many classes of rings, such as unique factorization domains, regular rings, group rings, rings of formal power series, Ore polynomials, graded rings, have been introduced for generalizing some properties of polynomial rings. A closely related notion is that of the ring ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Polynomial Remainder Theorem
In mathematics, a polynomial is an expression consisting of indeterminates (also called variables) and coefficients, that involves only the operations of addition, subtraction, multiplication, and positive-integer powers of variables. An example of a polynomial of a single indeterminate is . An example with three indeterminates is . Polynomials appear in many areas of mathematics and science. For example, they are used to form polynomial equations, which encode a wide range of problems, from elementary word problems to complicated scientific problems; they are used to define polynomial functions, which appear in settings ranging from basic chemistry and physics to economics and social science; they are used in calculus and numerical analysis to approximate other functions. In advanced mathematics, polynomials are used to construct polynomial rings and algebraic varieties, which are central concepts in algebra and algebraic geometry. Etymology The word ''polynomial'' joins ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Factor Theorem
In algebra, the factor theorem is a theorem linking factors and zeros of a polynomial. It is a special case of the polynomial remainder theorem. The factor theorem states that a polynomial f(x) has a factor (x - \alpha) if and only if f(\alpha)=0 (i.e. \alpha is a root). Factorization of polynomials Two problems where the factor theorem is commonly applied are those of factoring a polynomial and finding the roots of a polynomial equation; it is a direct consequence of the theorem that these problems are essentially equivalent. The factor theorem is also used to remove known zeros from a polynomial while leaving all unknown zeros intact, thus producing a lower degree polynomial whose zeros may be easier to find. Abstractly, the method is as follows:. # Deduce the candidate of zero a of the polynomial f from its leading coefficient a_n and constant term a_0. (See Rational Root Theorem.) # Use the factor theorem to conclude that (x-a) is a factor of f(x). # Compute the polynomial ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Algebraic Equation
In mathematics, an algebraic equation or polynomial equation is an equation of the form :P = 0 where ''P'' is a polynomial with coefficients in some field, often the field of the rational numbers. For many authors, the term ''algebraic equation'' refers only to ''univariate equations'', that is polynomial equations that involve only one variable. On the other hand, a polynomial equation may involve several variables. In the case of several variables (the ''multivariate'' case), the term ''polynomial equation'' is usually preferred to ''algebraic equation''. For example, :x^5-3x+1=0 is an algebraic equation with integer coefficients and :y^4 + \frac - \frac + xy^2 + y^2 + \frac = 0 is a multivariate polynomial equation over the rationals. Some but not all polynomial equations with rational coefficients have a solution that is an algebraic expression that can be found using a finite number of operations that involve only those same types of coefficients (that is, can be solved alg ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Integer-valued Polynomial
In mathematics, an integer-valued polynomial (also known as a numerical polynomial) P(t) is a polynomial whose value P(n) is an integer for every integer ''n''. Every polynomial with integer coefficients is integer-valued, but the converse is not true. For example, the polynomial : \frac t^2 + \frac t=\fract(t+1) takes on integer values whenever ''t'' is an integer. That is because one of ''t'' and t + 1 must be an even number. (The values this polynomial takes are the triangular numbers.) Integer-valued polynomials are objects of study in their own right in algebra, and frequently appear in algebraic topology.. See in particular pp. 213–214. Classification The class of integer-valued polynomials was described fully by . Inside the polynomial ring \Q /math> of polynomials with rational number coefficients, the subring of integer-valued polynomials is a free abelian group. It has as basis the polynomials :P_k(t) = t(t-1)\cdots (t-k+1)/k! for k = 0,1,2, \dots, i.e., th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]