HOME
*





List Of Physical Constants
The constants listed here are known values of physical constants expressed in SI units; that is, physical quantities that are generally believed to be universal in nature and thus are independent of the unit system in which they are measured. Many of these are redundant, in the sense that they obey a known relationship with other physical constants and can be determined from them. Table of physical constants Uncertainties While the values of the physical constants are independent of the system of units in use, each uncertainty as stated reflects our lack of knowledge of the corresponding value as expressed in SI units, and is strongly dependent on how those units are defined. For example, the atomic mass constant m_ is exactly known when expressed using the dalton (its value is exactly 1 Da), but the kilogram is not exactly known when using these units, the opposite of when expressing the same quantities using the kilogram. Technical constants Some of these constants ar ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Physical Constant
A physical constant, sometimes fundamental physical constant or universal constant, is a physical quantity that is generally believed to be both universal in nature and have constant value in time. It is contrasted with a mathematical constant, which has a fixed numerical value, but does not directly involve any physical measurement. There are many physical constants in science, some of the most widely recognized being the speed of light in a vacuum ''c'', the gravitational constant ''G'', the Planck constant ''h'', the electric constant ''ε''0, and the elementary charge ''e''. Physical constants can take many dimensional forms: the speed of light signifies a maximum speed for any object and its dimension is length divided by time; while the fine-structure constant ''α'', which characterizes the strength of the electromagnetic interaction, is dimensionless. The term ''fundamental physical constant'' is sometimes used to refer to universal-but-dimensioned physical constants su ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Von Klitzing Constant
The quantum Hall effect (or integer quantum Hall effect) is a quantized version of the Hall effect which is observed in two-dimensional electron systems subjected to low temperatures and strong magnetic fields, in which the Hall resistance exhibits steps that take on the quantized values : R_ = \frac = \frac , where is the Hall voltage, is the channel current, is the elementary charge and is Planck's constant. The divisor can take on either integer () or fractional () values. Here, is roughly but not exactly equal to the filling factor of Landau levels. The quantum Hall effect is referred to as the integer or fractional quantum Hall effect depending on whether is an integer or fraction, respectively. The striking feature of the integer quantum Hall effect is the persistence of the quantization (i.e. the Hall plateau) as the electron density is varied. Since the electron density remains constant when the Fermi level is in a clean spectral gap, this situation correspond ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

G-factor (physics)
A ''g''-factor (also called ''g'' value or dimensionless magnetic moment) is a dimensionless quantity that characterizes the magnetic moment and angular momentum of an atom, a particle or the nucleus. It is essentially a proportionality constant that relates the different observed magnetic moments ''μ'' of a particle to their angular momentum quantum numbers and a unit of magnetic moment (to make it dimensionless), usually the Bohr magneton or nuclear magneton. Definition Dirac particle The spin magnetic moment of a charged, spin-1/2 particle that does not possess any internal structure (a Dirac particle) is given by \boldsymbol \mu = g \mathbf S , where ''μ'' is the spin magnetic moment of the particle, ''g'' is the ''g''-factor of the particle, ''e'' is the elementary charge, ''m'' is the mass of the particle, and S is the spin angular momentum of the particle (with magnitude ''ħ''/2 for Dirac particles). Baryon or nucleus Protons, neutrons, nuclei and other composit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

National Institute Of Standards And Technology
The National Institute of Standards and Technology (NIST) is an agency of the United States Department of Commerce whose mission is to promote American innovation and industrial competitiveness. NIST's activities are organized into physical science laboratory programs that include nanoscale science and technology, engineering, information technology, neutron research, material measurement, and physical measurement. From 1901 to 1988, the agency was named the National Bureau of Standards. History Background The Articles of Confederation, ratified by the colonies in 1781, provided: The United States in Congress assembled shall also have the sole and exclusive right and power of regulating the alloy and value of coin struck by their own authority, or by that of the respective states—fixing the standards of weights and measures throughout the United States. Article 1, section 8, of the Constitution of the United States, ratified in 1789, granted these powers to the new Congr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Weinberg Angle
The weak mixing angle or Weinberg angle is a parameter in the Weinberg– Salam theory of the electroweak interaction, part of the Standard Model of particle physics, and is usually denoted as . It is the angle by which spontaneous symmetry breaking rotates the original and vector boson plane, producing as a result the  boson, and the photon. Its measured value is slightly below 30°, but also varies, very slightly increasing, depending on how high the relative momentum of the particles involved in the interaction is that the angle is used for. Details The algebraic formula for the combination of the and vector bosons (i.e. 'mixing') that simultaneously produces the massive  boson and the massless photon () is expressed by the formula : \begin \gamma \\ Z^0 \end = \begin \cos \theta_\text & \sin \theta_\text \\ -\sin \theta_\text & \cos \theta_\text \end \begin B^0 \\ W^0 \end . The ''weak mixing angle'' also gives the relationship between the masses of the W an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Proton-to-electron Mass Ratio
In physics, the proton-to-electron mass ratio, ''μ'' or ''β'', is the rest mass of the proton (a baryon found in atoms) divided by that of the electron (a lepton found in atoms), a dimensionless quantity, namely: :''μ'' = The number in parentheses is the measurement uncertainty on the last two digits, corresponding to a relative standard uncertainty of Discussion ''μ'' is an important fundamental physical constant because: * Baryonic matter consists of quarks and particles made from quarks, like protons and neutrons. Free neutrons have a half-life of 613.9 seconds. Electrons and protons appear to be stable, to the best of current knowledge. (Theories of proton decay predict that the proton has a half life on the order of at least 1032 years. To date, there is no experimental evidence of proton decay.); * Because they are stable, are components of all normal atoms, and determine their chemical properties, the proton is the most prevalent baryon, while the electron is the most ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Top Quark
The top quark, sometimes also referred to as the truth quark, (symbol: t) is the most massive of all observed elementary particles. It derives its mass from its coupling to the Higgs Boson. This coupling y_ is very close to unity; in the Standard Model of particle physics, it is the largest (strongest) coupling at the scale of the weak interactions and above. The top quark was discovered in 1995 by the CDF and DØ experiments at Fermilab. Like all other quarks, the top quark is a fermion with spin and participates in all four fundamental interactions: gravitation, electromagnetism, weak interactions, and strong interactions. It has an electric charge of +  ''e''. It has a mass of , which is close to the rhenium atom mass. The antiparticle of the top quark is the top antiquark (symbol: , sometimes called ''antitop quark'' or simply ''antitop''), which differs from it only in that some of its properties have equal magnitude but opposite sign. The top quark interacts with ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Tau (particle)
The tau (), also called the tau lepton, tau particle, tauon or tau electron, is an elementary particle similar to the electron, with negative electric charge and a spin of . Like the electron, the muon, and the three neutrinos, the tau is a lepton, and like all elementary particles with half-integer spin, the tau has a corresponding antiparticle of opposite charge but equal mass and spin. In the tau's case, this is the "antitau" (also called the ''positive tau''). Tau particles are denoted by the symbol and the antitaus by . Tau leptons have a lifetime of and a mass of (compared to for muons and for electrons). Since their interactions are very similar to those of the electron, a tau can be thought of as a ''much'' heavier version of the electron. Because of their greater mass, tau particles do not emit as much bremsstrahlung radiation as electrons; consequently they are potentially much more highly penetrating than electrons. Because of its short lifetime, the range o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Muon
A muon ( ; from the Greek letter mu (μ) used to represent it) is an elementary particle similar to the electron, with an electric charge of −1 '' e'' and a spin of , but with a much greater mass. It is classified as a lepton. As with other leptons, the muon is not thought to be composed of any simpler particles; that is, it is a fundamental particle. The muon is an unstable subatomic particle with a mean lifetime of , much longer than many other subatomic particles. As with the decay of the non-elementary neutron (with a lifetime around 15 minutes), muon decay is slow (by subatomic standards) because the decay is mediated only by the weak interaction (rather than the more powerful strong interaction or electromagnetic interaction), and because the mass difference between the muon and the set of its decay products is small, providing few kinetic degrees of freedom for decay. Muon decay almost always produces at least three particles, which must include an electron o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Neutron
The neutron is a subatomic particle, symbol or , which has a neutral (not positive or negative) charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the nuclei of atoms. Since protons and neutrons behave similarly within the nucleus, and each has a mass of approximately one atomic mass unit, they are both referred to as nucleons. Their properties and interactions are described by nuclear physics. Protons and neutrons are not elementary particles; each is composed of three quarks. The chemical properties of an atom are mostly determined by the configuration of electrons that orbit the atom's heavy nucleus. The electron configuration is determined by the charge of the nucleus, which is determined by the number of protons, or atomic number. The number of neutrons is the neutron number. Neutrons do not affect the electron configuration, but the sum of atomic and neutron numbers is the mass of the nucleus. Atoms of a chemical element t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Proton
A proton is a stable subatomic particle, symbol , H+, or 1H+ with a positive electric charge of +1 ''e'' elementary charge. Its mass is slightly less than that of a neutron and 1,836 times the mass of an electron (the proton–electron mass ratio). Protons and neutrons, each with masses of approximately one atomic mass unit, are jointly referred to as "nucleons" (particles present in atomic nuclei). One or more protons are present in the nucleus of every atom. They provide the attractive electrostatic central force which binds the atomic electrons. The number of protons in the nucleus is the defining property of an element, and is referred to as the atomic number (represented by the symbol ''Z''). Since each element has a unique number of protons, each element has its own unique atomic number, which determines the number of atomic electrons and consequently the chemical characteristics of the element. The word ''proton'' is Greek for "first", and this name was given to the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Electron Mass
The electron mass (symbol: ''m''e) is the mass of a stationary electron, also known as the invariant mass of the electron. It is one of the fundamental constants of physics. It has a value of about or about , which has an energy-equivalent of about or about Terminology The term "rest mass" is sometimes used because in special relativity the mass of an object can be said to increase in a frame of reference that is moving relative to that object (or if the object is moving in a given frame of reference). Most practical measurements are carried out on moving electrons. If the electron is moving at a relativistic velocity, any measurement must use the correct expression for mass. Such correction becomes substantial for electrons accelerated by voltages of over . For example, the relativistic expression for the total energy, ''E'', of an electron moving at speed v is :E = \gamma m_\text c^2 , where the Lorentz factor is \gamma = 1/\sqrt . In this expression ''m''e is the "re ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]