List Of Permutation Topics
This is a list of topics on mathematical permutations. Particular kinds of permutations * Alternating permutation * Circular shift *Cyclic permutation * Derangement *Even and odd permutations—see Parity of a permutation * Josephus permutation * Parity of a permutation * Separable permutation * Stirling permutation * Superpattern *Transposition (mathematics) * Unpredictable permutation Combinatorics of permutations *Bijection * Combination *Costas array * Cycle index * Cycle notation * Cycles and fixed points * Cyclic order * Direct sum of permutations * Enumerations of specific permutation classes *Factorial **Falling factorial *Permutation matrix ** Generalized permutation matrix *Inversion (discrete mathematics) * Major index * Ménage problem * Permutation graph * Permutation pattern * Permutation polynomial * Permutohedron * Rencontres numbers * Robinson–Schensted correspondence *Sum of permutations: ** Direct sum of permutations ** Skew sum of permutations * Sta ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Permutation
In mathematics, a permutation of a set can mean one of two different things: * an arrangement of its members in a sequence or linear order, or * the act or process of changing the linear order of an ordered set. An example of the first meaning is the six permutations (orderings) of the set : written as tuples, they are (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), and (3, 2, 1). Anagrams of a word whose letters are all different are also permutations: the letters are already ordered in the original word, and the anagram reorders them. The study of permutations of finite sets is an important topic in combinatorics and group theory. Permutations are used in almost every branch of mathematics and in many other fields of science. In computer science, they are used for analyzing sorting algorithms; in quantum physics, for describing states of particles; and in biology, for describing RNA sequences. The number of permutations of distinct objects is factorial, us ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cycles And Fixed Points
In mathematics, the cycles of a permutation of a finite set S correspond bijectively to the orbits of the subgroup generated by acting on ''S''. These orbits are subsets of S that can be written as , such that : for , and . The corresponding cycle of is written as ( ''c''1 ''c''2 ... ''c''''n'' ); this expression is not unique since ''c''1 can be chosen to be any element of the orbit. The size of the orbit is called the length of the corresponding cycle; when , the single element in the orbit is called a fixed point of the permutation. A permutation is determined by giving an expression for each of its cycles, and one notation for permutations consist of writing such expressions one after another in some order. For example, let : \pi = \begin 1 & 6 & 7 & 2 & 5 & 4 & 8 & 3 \\ 2 & 8 & 7 & 4 & 5 & 3 & 6 & 1 \end = \begin 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 4 & 1 & 3 & 5 & 8 & 7 & 6 \end be a permutation that maps 1 to 2, 6 to 8, etc. Then one may write : = ( 1 2 4 3 ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Permutation Polynomial
In mathematics, a permutation polynomial (for a given ring) is a polynomial that acts as a permutation of the elements of the ring, i.e. the map x \mapsto g(x) is a bijection. In case the ring is a finite field, the Dickson polynomials, which are closely related to the Chebyshev polynomials, provide examples. Over a finite field, every function, so in particular every permutation of the elements of that field, can be written as a polynomial function. In the case of finite rings Z/''n''Z, such polynomials have also been studied and applied in the interleaver component of error detection and correction algorithms. Single variable permutation polynomials over finite fields Let be the finite field of characteristic , that is, the field having elements where for some prime . A polynomial with coefficients in (symbolically written as ) is a ''permutation polynomial'' of if the function from to itself defined by c \mapsto f(c) is a permutation of . Due to the finiteness of , th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Permutation Pattern
In combinatorial mathematics and theoretical computer science, a (classical) permutation pattern is a sub-permutation of a longer permutation. Any permutation may be written in one-line notation as a sequence of entries representing the result of applying the permutation to the sequence 123...; for instance the sequence 213 represents the permutation on three elements that swaps elements 1 and 2. If π and σ are two permutations represented in this way (these variable names are standard for permutations and are unrelated to the number pi), then π is said to ''contain'' σ as a ''pattern'' if some subsequence of the entries of π has the same relative order as all of the entries of σ. For instance, permutation π contains the pattern 213 whenever π has three entries ''x'', ''y'', and ''z'' that appear within π in the order ''x''...''y''...''z'' but whose values are ordered as ''y'' < ''x'' < ''z'', the same as the ordering of the values in the permutation 2 ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Permutation Graph
In the mathematical field of graph theory, a permutation graph is a graph whose vertices represent the elements of a permutation, and whose edges represent pairs of elements that are reversed by the permutation. Permutation graphs may also be defined geometrically, as the intersection graphs of line segments whose endpoints lie on two parallel lines. Different permutations may give rise to the same permutation graph; a given graph has a unique representation (up to permutation symmetry) if it is prime with respect to the modular decomposition. Definition and characterization If \rho = (\sigma_1,\sigma_2,...,\sigma_n) is any permutation of the numbers from 1 to n, then one may define a permutation graph from \sigma in which there are n vertices v_1, v_2, ..., v_n, and in which there is an edge v_i v_j for any two indices i < j for which appears before in . That is, two indices and determine an ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ménage Problem
In combinatorics, combinatorial mathematics, the ménage problem or problème des ménages asks for the number of different ways in which it is possible to seat a set of male-female couples at a round dining table so that men and women alternate and nobody sits next to his or her partner. (''Ménage'' is the French language, French word for "household", referring here to a male-female couple.) This problem was formulated in 1891 by Édouard Lucas and independently, a few years earlier, by Peter Guthrie Tait in connection with knot theory. For a number of couples equal to 3, 4, 5, ... the number of seating arrangements is :12, 96, 3120, 115200, 5836320, 382072320, 31488549120, ... . Mathematicians have developed formulas and recurrence equations for computing these numbers and related sequences of numbers. Along with their applications to etiquette and knot theory, these numbers also have a graph theory, graph theoretic interpretation: they count the numbers of matching (graph theor ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Major Index
In mathematics (and particularly in combinatorics), the major index of a permutation is the sum of the positions of the descents of the permutation. In symbols, the major index of the permutation ''w'' is : \operatorname(w) = \sum_ i. For example, if ''w'' is given in one-line notation by ''w'' = 351624 (that is, ''w'' is the permutation of such that ''w''(1) = 3, ''w''(2) = 5, etc.) then ''w'' has descents at positions 2 (from 5 to 1) and 4 (from 6 to 2) and so maj(''w'') = 2 + 4 = 6. This statistic is named after Major Percy Alexander MacMahon who showed in 1913 Events January * January – Joseph Stalin travels to Vienna to research his ''Marxism and the National Question''. This means that, during this month, Stalin, Hitler, Trotsky and Tito are all living in the city. * January 3 &ndash ... that the distribution of the major index on all permutations of a fixed length is the same as the distribution of inversions. That is, the number of permutations ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Inversion (discrete Mathematics)
In computer science and discrete mathematics, an inversion in a sequence is a pair of elements that are out of their natural total order, order. Definitions Inversion Let \pi be a permutation. There is an inversion of \pi between i and j if i \pi(j). The inversion is indicated by an ordered pair containing either the places (i, j) or the elements \bigl(\pi(i), \pi(j)\bigr). The #Example:_All_permutations_of_four_elements, inversion set is the set of all inversions. A permutation's inversion set using place-based notation is the same as the Permutation#Definition, inverse permutation's inversion set using element-based notation with the two components of each ordered pair exchanged. Likewise, a permutation's inversion set using element-based notation is the same as the inverse permutation's inversion set using place-based notation with the two components of each ordered pair exchanged. Inversions are usually defined for permutations, but may also be defined for sequences ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Generalized Permutation Matrix
In mathematics, a generalized permutation matrix (or monomial matrix) is a matrix with the same nonzero pattern as a permutation matrix, i.e. there is exactly one nonzero entry in each row and each column. Unlike a permutation matrix, where the nonzero entry must be 1, in a generalized permutation matrix the nonzero entry can be any nonzero value. An example of a generalized permutation matrix is :\begin 0 & 0 & 3 & 0\\ 0 & -7 & 0 & 0\\ 1 & 0 & 0 & 0\\ 0 & 0 & 0 & \sqrt2\end. Structure An invertible matrix ''A'' is a generalized permutation matrix if and only if it can be written as a product of an invertible diagonal matrix ''D'' and an (implicitly invertible) permutation matrix ''P'': i.e., :A = DP. Group structure The set of ''n'' × ''n'' generalized permutation matrices with entries in a field ''F'' forms a subgroup of the general linear group GL(''n'', ''F''), in which the group of nonsingular diagonal matrices Δ(''n'', ''F'') forms a normal subgroup. I ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Permutation Matrix
In mathematics, particularly in matrix theory, a permutation matrix is a square binary matrix that has exactly one entry of 1 in each row and each column with all other entries 0. An permutation matrix can represent a permutation of elements. Pre- multiplying an -row matrix by a permutation matrix , forming , results in permuting the rows of , while post-multiplying an -column matrix , forming , permutes the columns of . Every permutation matrix ''P'' is orthogonal, with its inverse equal to its transpose: P^=P^\mathsf. Indeed, permutation matrices can be characterized as the orthogonal matrices whose entries are all non-negative. The two permutation/matrix correspondences There are two natural one-to-one correspondences between permutations and permutation matrices, one of which works along the rows of the matrix, the other along its columns. Here is an example, starting with a permutation in two-line form at the upper left: :\begin \pi\colon\begin1&2&3&4\\3&2&4&1\e ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Falling Factorial
In mathematics, the falling factorial (sometimes called the descending factorial, falling sequential product, or lower factorial) is defined as the polynomial \begin (x)_n = x^\underline &= \overbrace^ \\ &= \prod_^n(x-k+1) = \prod_^(x-k) . \end The rising factorial (sometimes called the Pochhammer function, Pochhammer polynomial, ascending factorial, — A reprint of the 1950 edition by Chelsea Publishing. rising sequential product, or upper factorial) is defined as \begin x^ = x^\overline &= \overbrace^ \\ &= \prod_^n(x+k-1) = \prod_^(x+k) . \end The value of each is taken to be 1 (an empty product) when n=0. These symbols are collectively called factorial powers. The Pochhammer symbol, introduced by Leo August Pochhammer, is the notation (x)_n, where is a non-negative integer. It may represent ''either'' the rising or the falling factorial, with different articles and authors using different conventions. Pochhammer himself actually used (x)_n with yet another meaning, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Factorial
In mathematics, the factorial of a non-negative denoted is the Product (mathematics), product of all positive integers less than or equal The factorial also equals the product of n with the next smaller factorial: \begin n! &= n \times (n-1) \times (n-2) \times (n-3) \times \cdots \times 3 \times 2 \times 1 \\ &= n\times(n-1)!\\ \end For example, 5! = 5\times 4! = 5 \times 4 \times 3 \times 2 \times 1 = 120. The value of 0! is 1, according to the convention for an empty product. Factorials have been discovered in several ancient cultures, notably in Indian mathematics in the canonical works of Jain literature, and by Jewish mystics in the Talmudic book ''Sefer Yetzirah''. The factorial operation is encountered in many areas of mathematics, notably in combinatorics, where its most basic use counts the possible distinct sequences – the permutations – of n distinct objects: there In mathematical analysis, factorials are used in power series for the ex ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |