HOME
*





List Of Knapsack Problems
The knapsack problem is one of the most studied problems in combinatorial optimization, with many real-life applications. For this reason, many special cases and generalizations have been examined. Common to all versions are a set of ''n'' items, with each item 1 \leq j \leq n having an associated profit ''pj'' and weight ''wj''. The binary decision variable ''xj'' is used to select the item. The objective is to pick some of the items, with maximal total profit, while obeying that the maximum total weight of the chosen items must not exceed ''W''. Generally, these coefficients are scaled to become integers, and they are almost always assumed to be positive. The knapsack problem in its most basic form: __TOC__ Direct generalizations One common variant is that each item can be chosen multiple times. The bounded knapsack problem specifies, for each item ''j'', an upper bound ''uj'' (which may be a positive integer, or infinity) on the number of times item ''j'' can be selected: T ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Knapsack Problem
The knapsack problem is a problem in combinatorial optimization: Given a set of items, each with a weight and a value, determine the number of each item to include in a collection so that the total weight is less than or equal to a given limit and the total value is as large as possible. It derives its name from the problem faced by someone who is constrained by a fixed-size knapsack and must fill it with the most valuable items. The problem often arises in resource allocation where the decision-makers have to choose from a set of non-divisible projects or tasks under a fixed budget or time constraint, respectively. The knapsack problem has been studied for more than a century, with early works dating as far back as 1897. The name "knapsack problem" dates back to the early works of the mathematician Tobias Dantzig (1884–1956), and refers to the commonplace problem of packing the most valuable or useful items without overloading the luggage. Applications Knapsack problems ap ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Combinatorial Optimization
Combinatorial optimization is a subfield of mathematical optimization that consists of finding an optimal object from a finite set of objects, where the set of feasible solutions is discrete or can be reduced to a discrete set. Typical combinatorial optimization problems are the travelling salesman problem ("TSP"), the minimum spanning tree problem ("MST"), and the knapsack problem. In many such problems, such as the ones previously mentioned, exhaustive search is not tractable, and so specialized algorithms that quickly rule out large parts of the search space or approximation algorithms must be resorted to instead. Combinatorial optimization is related to operations research, algorithm theory, and computational complexity theory. It has important applications in several fields, including artificial intelligence, machine learning, auction theory, software engineering, VLSI, applied mathematics and theoretical computer science. Some research literature considers discrete o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

John Wiley & Sons
John Wiley & Sons, Inc., commonly known as Wiley (), is an American multinational publishing company founded in 1807 that focuses on academic publishing and instructional materials. The company produces books, journals, and encyclopedias, in print and electronically, as well as online products and services, training materials, and educational materials for undergraduate, graduate, and continuing education students. History The company was established in 1807 when Charles Wiley opened a print shop in Manhattan. The company was the publisher of 19th century American literary figures like James Fenimore Cooper, Washington Irving, Herman Melville, and Edgar Allan Poe, as well as of legal, religious, and other non-fiction titles. The firm took its current name in 1865. Wiley later shifted its focus to scientific, technical, and engineering subject areas, abandoning its literary interests. Wiley's son John (born in Flatbush, New York, October 4, 1808; died in East Orange, New Je ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

NP-complete
In computational complexity theory, a problem is NP-complete when: # it is a problem for which the correctness of each solution can be verified quickly (namely, in polynomial time) and a brute-force search algorithm can find a solution by trying all possible solutions. # the problem can be used to simulate every other problem for which we can verify quickly that a solution is correct. In this sense, NP-complete problems are the hardest of the problems to which solutions can be verified quickly. If we could find solutions of some NP-complete problem quickly, we could quickly find the solutions of every other problem to which a given solution can be easily verified. The name "NP-complete" is short for "nondeterministic polynomial-time complete". In this name, "nondeterministic" refers to nondeterministic Turing machines, a way of mathematically formalizing the idea of a brute-force search algorithm. Polynomial time refers to an amount of time that is considered "quick" for a de ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Polynomial-time Approximation Scheme
In computer science (particularly algorithmics), a polynomial-time approximation scheme (PTAS) is a type of approximation algorithm for optimization problems (most often, NP-hard optimization problems). A PTAS is an algorithm which takes an instance of an optimization problem and a parameter and produces a solution that is within a factor of being optimal (or for maximization problems). For example, for the Euclidean traveling salesman problem, a PTAS would produce a tour with length at most , with being the length of the shortest tour. The running time of a PTAS is required to be polynomial in the problem size for every fixed ε, but can be different for different ε. Thus an algorithm running in time or even counts as a PTAS. Variants Deterministic A practical problem with PTAS algorithms is that the exponent of the polynomial could increase dramatically as ε shrinks, for example if the runtime is . One way of addressing this is to define the efficient polynomial-time a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Subset Sum Problem
The subset sum problem (SSP) is a decision problem in computer science. In its most general formulation, there is a multiset S of integers and a target-sum T, and the question is to decide whether any subset of the integers sum to precisely T''.'' The problem is known to be NP. Moreover, some restricted variants of it are NP-complete too, for example: * The variant in which all inputs are positive. * The variant in which inputs may be positive or negative, and T=0. For example, given the set \, the answer is ''yes'' because the subset \ sums to zero. * The variant in which all inputs are positive, and the target sum is exactly half the sum of all inputs, i.e., T = \frac(a_1+\dots+a_n) . This special case of SSP is known as the partition problem. SSP can also be regarded as an optimization problem: find a subset whose sum is at most ''T'', and subject to that, as close as possible to ''T''. It is NP-hard, but there are several algorithms that can solve it reasonably quickly in pra ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Decision Problem
In computability theory and computational complexity theory, a decision problem is a computational problem that can be posed as a yes–no question of the input values. An example of a decision problem is deciding by means of an algorithm whether a given natural number is prime. Another is the problem "given two numbers ''x'' and ''y'', does ''x'' evenly divide ''y''?". The answer is either 'yes' or 'no' depending upon the values of ''x'' and ''y''. A method for solving a decision problem, given in the form of an algorithm, is called a decision procedure for that problem. A decision procedure for the decision problem "given two numbers ''x'' and ''y'', does ''x'' evenly divide ''y''?" would give the steps for determining whether ''x'' evenly divides ''y''. One such algorithm is long division. If the remainder is zero the answer is 'yes', otherwise it is 'no'. A decision problem which can be solved by an algorithm is called ''decidable''. Decision problems typically appear in mat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quadratic Knapsack Problem
The quadratic knapsack problem (QKP), first introduced in 19th century, is an extension of knapsack problem that allows for quadratic terms in the objective function: Given a set of items, each with a weight, a value, and an extra profit that can be earned if two items are selected, determine the number of items to include in a collection without exceeding capacity of the knapsack, so as to maximize the overall profit. Usually, quadratic knapsack problems come with a restriction on the number of copies of each kind of item: either 0, or 1. This special type of QKP forms the 0-1 quadratic knapsack problem, which was first discussed by Gallo et al. The 0-1 quadratic knapsack problem is a variation of knapsack problems, combining the features of unbounded knapsack problem, 0-1 knapsack problem and quadratic knapsack problem. Definition Specifically, the 0–1 quadratic knapsack problem has the following form: : \text \left\ : \text X\equiv\left\. Here the binary variable ''xi'' re ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Springer Verlag
Springer Science+Business Media, commonly known as Springer, is a German multinational publishing company of books, e-books and peer-reviewed journals in science, humanities, technical and medical (STM) publishing. Originally founded in 1842 in Berlin, it expanded internationally in the 1960s, and through mergers in the 1990s and a sale to venture capitalists it fused with Wolters Kluwer and eventually became part of Springer Nature in 2015. Springer has major offices in Berlin, Heidelberg, Dordrecht, and New York City. History Julius Springer founded Springer-Verlag in Berlin in 1842 and his son Ferdinand Springer grew it from a small firm of 4 employees into Germany's then second largest academic publisher with 65 staff in 1872.Chronology
". Springer Science+Business Media.
In 1964, Springer expanded its business internationally, o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Pseudo-polynomial Time
In computational complexity theory, a numeric algorithm runs in pseudo-polynomial time if its running time is a polynomial in the ''numeric value'' of the input (the largest integer present in the input)—but not necessarily in the ''length'' of the input (the number of bits required to represent it), which is the case for polynomial time algorithms. Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman and Company, 1979. In general, the numeric value of the input is exponential in the input length, which is why a pseudo-polynomial time algorithm does not necessarily run in polynomial time with respect to the input length. An NP-complete problem with known pseudo-polynomial time algorithms is called weakly NP-complete. An NP-complete problem is called strongly NP-complete if it is proven that it cannot be solved by a pseudo-polynomial time algorithm unless . The strong/weak kinds of NP-hardness are defined anal ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]