HOME
*



picture info

List Of Important Publications In Mathematics
This is a list of important publications in mathematics, organized by field. Some reasons why a particular publication might be regarded as important: *Topic creator – A publication that created a new topic *Breakthrough – A publication that changed scientific knowledge significantly *Influence – A publication which has significantly influenced the world or has had a massive impact on the teaching of mathematics. Among published compilations of important publications in mathematics are ''Landmark writings in Western mathematics 1640–1940'' by Ivor Grattan-Guinness and ''A Source Book in Mathematics'' by David Eugene Smith. Algebra Theory of equations ''Baudhayana Sulba Sutra'' * Baudhayana (8th century BCE) Believed to have been written around the 8th century BCE, this is one of the oldest mathematical texts. It laid the foundations of Indian mathematics and was influential in South Asia and its surrounding regions, and Indian mathematics#Charges of Eu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Oxyrhynchus Papyrus With Euclid's Elements
Oxyrhynchus (; grc-gre, Ὀξύρρυγχος, Oxýrrhynchos, sharp-nosed; ancient Egyptian ''Pr-Medjed''; cop, or , ''Pemdje''; ar, البهنسا, ''Al-Bahnasa'') is a city in Middle Egypt located about 160 km south-southwest of Cairo Cairo ( ; ar, القاهرة, al-Qāhirah, ) is the capital of Egypt and its largest city, home to 10 million people. It is also part of the largest urban agglomeration in Africa, the Arab world and the Middle East: The Greater Cairo metro ... in Minya Governorate. It is also an archaeological site, considered one of the most important ever discovered. Since the late 19th century, the area around Oxyrhynchus has been excavated almost continually, yielding an enormous collection of papyrus texts dating from the Ptolemaic Kingdom and Egypt (Roman province), Roman Egypt. They also include a few vellum manuscripts, and more recent Arabic language, Arabic manuscripts on paper (for example, the medieval P. Oxy. VI 1006) History Anci ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Aryabhatiya
''Aryabhatiya'' (IAST: ') or ''Aryabhatiyam'' ('), a Sanskrit astronomical treatise, is the ''magnum opus'' and only known surviving work of the 5th century Indian mathematician Aryabhata. Philosopher of astronomy Roger Billard estimates that the book was composed around 510 CE based on historical references it mentions. Structure and style Aryabhatiya is written in Sanskrit and divided into four sections; it covers a total of 121 verses describing different moralitus via a mnemonic writing style typical for such works in India (see definitions below): 1. Gitikapada (13 verses): large units of time—kalpa, manvantara, and yuga—which present a cosmology different from earlier texts such as Lagadha's Vedanga Jyotisha (ca. 1st century BCE). There is also a table of ine (jya), given in a single verse. The duration of the planetary revolutions during a mahayuga is given as 4.32 million years. 2. Ganitapada (33 verses): covering mensuration (kṣetra vyāvahāra); arithmetic and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Līlāvatī
''Līlāvatī'' is Indian mathematician Bhāskara II's treatise on mathematics, written in 1150 AD. It is the first volume of his main work, the ''Siddhānta Shiromani'', alongside the ''Bijaganita'', the ''Grahaganita'' and the ''Golādhyāya''. Name His book on arithmetic is the source of interesting legends that assert that it was written for his daughter, Lilavati. Lilavati was Bhaskara II's daughter. Bhaskara II studied Lilavati's horoscope and predicted that she would remain both childless and unmarried. To avoid this fate, he ascertained an auspicious moment for his daughter's wedding and to alert his daughter at the correct time, he placed a cup with a small hole at the bottom of a vessel filled with water, arranged so that the cup would sink at the beginning of the propitious hour. He put the device in a room with a warning to Lilavati to not go near it. In her curiosity though, she went to look at the device and a pearl from her bridal dress accidentally dropped ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Islamic Mathematics
Mathematics during the Golden Age of Islam, especially during the 9th and 10th centuries, was built on Greek mathematics (Euclid, Archimedes, Apollonius) and Indian mathematics (Aryabhata, Brahmagupta). Important progress was made, such as full development of the decimal place-value system to include decimal fractions, the first systematised study of algebra, and advances in geometry and trigonometry. Arabic works played an important role in the transmission of mathematics to Europe during the 10th—12th centuries. Concepts Algebra The study of algebra, the name of which is derived from the Arabic word meaning completion or "reunion of broken parts", flourished during the Islamic golden age. Muhammad ibn Musa al-Khwarizmi, a Persian scholar in the House of Wisdom in Baghdad was the founder of algebra, is along with the Greek mathematician Diophantus, known as the father of algebra. In his book ''The Compendious Book on Calculation by Completion and Balancing'', Al-Khwa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Persian People
The Persians are an Iranian ethnic group who comprise over half of the population of Iran. They share a common cultural system and are native speakers of the Persian language as well as of the languages that are closely related to Persian. The ancient Persians were originally an ancient Iranian people who had migrated to the region of Persis (corresponding to the modern-day Iranian province of Fars) by the 9th century BCE. Together with their compatriot allies, they established and ruled some of the world's most powerful empires that are well-recognized for their massive cultural, political, and social influence, which covered much of the territory and population of the ancient world.. Throughout history, the Persian people have contributed greatly to art and science. Persian literature is one of the world's most prominent literary traditions. In contemporary terminology, people from Afghanistan, Tajikistan, and Uzbekistan who natively speak the Persian language are know ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quadratic Equation
In algebra, a quadratic equation () is any equation that can be rearranged in standard form as ax^2 + bx + c = 0\,, where represents an unknown (mathematics), unknown value, and , , and represent known numbers, where . (If and then the equation is linear equation, linear, not quadratic.) The numbers , , and are the ''coefficients'' of the equation and may be distinguished by respectively calling them, the ''quadratic coefficient'', the ''linear coefficient'' and the ''constant'' or ''free term''. The values of that satisfy the equation are called ''solution (mathematics), solutions'' of the equation, and ''zero of a function, roots'' or ''zero of a function, zeros'' of the Expression (mathematics), expression on its left-hand side. A quadratic equation has at most two solutions. If there is only one solution, one says that it is a double root. If all the coefficients are real numbers, there are either two real solutions, or a single real double root, or two complex number, c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Linear Equation
In mathematics, a linear equation is an equation that may be put in the form a_1x_1+\ldots+a_nx_n+b=0, where x_1,\ldots,x_n are the variables (or unknowns), and b,a_1,\ldots,a_n are the coefficients, which are often real numbers. The coefficients may be considered as parameters of the equation, and may be arbitrary expressions, provided they do not contain any of the variables. To yield a meaningful equation, the coefficients a_1, \ldots, a_n are required to not all be zero. Alternatively, a linear equation can be obtained by equating to zero a linear polynomial over some field, from which the coefficients are taken. The solutions of such an equation are the values that, when substituted for the unknowns, make the equality true. In the case of just one variable, there is exactly one solution (provided that a_1\ne 0). Often, the term ''linear equation'' refers implicitly to this particular case, in which the variable is sensibly called the ''unknown''. In the case of two vari ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebra
Algebra () is one of the broad areas of mathematics. Roughly speaking, algebra is the study of mathematical symbols and the rules for manipulating these symbols in formulas; it is a unifying thread of almost all of mathematics. Elementary algebra deals with the manipulation of variables (commonly represented by Roman letters) as if they were numbers and is therefore essential in all applications of mathematics. Abstract algebra is the name given, mostly in education, to the study of algebraic structures such as groups, rings, and fields (the term is no more in common use outside educational context). Linear algebra, which deals with linear equations and linear mappings, is used for modern presentations of geometry, and has many practical applications (in weather forecasting, for example). There are many areas of mathematics that belong to algebra, some having "algebra" in their name, such as commutative algebra, and some not, such as Galois theory. The word ''algebra'' is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Muhammad Ibn Mūsā Al-Khwārizmī
Muḥammad ibn Mūsā al-Khwārizmī ( ar, محمد بن موسى الخوارزمي, Muḥammad ibn Musā al-Khwārazmi; ), or al-Khwarizmi, was a Persians, Persian polymath from Khwarazm, who produced vastly influential works in Mathematics in medieval Islam, mathematics, Astronomy in the medieval Islamic world, astronomy, and Geography and cartography in medieval Islam, geography. Around 820 CE, he was appointed as the astronomer and head of the library of the House of Wisdom in Baghdad.Maher, P. (1998), "From Al-Jabr to Algebra", ''Mathematics in School'', 27(4), 14–15. Al-Khwarizmi's popularizing treatise on algebra (''The Compendious Book on Calculation by Completion and Balancing'', c. 813–833 CEOaks, J. (2009), "Polynomials and Equations in Arabic Algebra", ''Archive for History of Exact Sciences'', 63(2), 169–203.) presented the first systematic solution of linear equation, linear and quadratic equations. One of his principal achievements in algebra was his demon ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

The Compendious Book On Calculation By Completion And Balancing
''The Compendious Book on Calculation by Completion and Balancing'' ( ar, كتاب المختصر في حساب الجبر والمقابلة, ; la, Liber Algebræ et Almucabola), also known as ''Al-Jabr'' (), is an Arabic mathematical treatise on algebra written by the Persian polymath Muḥammad ibn Mūsā al-Khwārizmī around 820 CE while he was in the Abbasid capital of Baghdad, modern-day Iraq. ''Al-Jabr'' was a landmark work in the history of mathematics, establishing algebra as an independent discipline, and with the term "algebra" itself derived from ''Al-Jabr''. The ''Compendious Book'' provided an exhaustive account of solving for the positive roots of polynomial equations up to the second degree. It was the first text to teach algebra in an elementary form and for its own sake. It also introduced the fundamental concept of "reduction" and "balancing" (which the term ''al-jabr'' originally referred to), the transposition of subtracted terms to the other side o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




American Mathematical Society
The American Mathematical Society (AMS) is an association of professional mathematicians dedicated to the interests of mathematical research and scholarship, and serves the national and international community through its publications, meetings, advocacy and other programs. The society is one of the four parts of the Joint Policy Board for Mathematics and a member of the Conference Board of the Mathematical Sciences. History The AMS was founded in 1888 as the New York Mathematical Society, the brainchild of Thomas Fiske, who was impressed by the London Mathematical Society on a visit to England. John Howard Van Amringe was the first president and Fiske became secretary. The society soon decided to publish a journal, but ran into some resistance, due to concerns about competing with the American Journal of Mathematics. The result was the ''Bulletin of the American Mathematical Society'', with Fiske as editor-in-chief. The de facto journal, as intended, was influential in in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Brahmagupta
Brahmagupta ( – ) was an Indian mathematician and astronomer. He is the author of two early works on mathematics and astronomy: the ''Brāhmasphuṭasiddhānta'' (BSS, "correctly established doctrine of Brahma", dated 628), a theoretical treatise, and the '' Khaṇḍakhādyaka'' ("edible bite", dated 665), a more practical text. Brahmagupta was the first to give rules for computing with ''zero''. The texts composed by Brahmagupta were in elliptic verse in Sanskrit, as was common practice in Indian mathematics. As no proofs are given, it is not known how Brahmagupta's results were derived. In 628 CE, Brahmagupta first described gravity as an attractive force, and used the term "gurutvākarṣaṇam (गुरुत्वाकर्षणम्)" in Sanskrit to describe it. Life and career Brahmagupta was born in 598 CE according to his own statement. He lived in ''Bhillamāla'' in Gurjaradesa (modern Bhinmal in Rajasthan, India) during the reign of the Chavda dynasty ruler, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]