List Of Intel Core 2 Microprocessors
   HOME
*



picture info

List Of Intel Core 2 Microprocessors
The Core 2 brand refers to Intel's x86 and x86-64 processors with the Core microarchitecture made for the consumer and business markets (except servers) above Pentium. The Core 2 Solo branch covered single-core CPUs for notebook computers, Core 2 Duo – dual-core CPUs for desktop and notebook computers, Core 2 Quad – quad-core CPUs for desktop and notebook computers, and Core 2 Extreme – dual-core and quad-core CPUs for desktop and notebook computers. Desktop processors Dual-Core Desktop processors Core 2 Duo = "Allendale" (65 nm, 800 MT/s) = *All models support: '' MMX, SSE, SSE2, SSE3, SSSE3, Enhanced Intel SpeedStep Technology (EIST), Intel 64, XD bit (an NX bit implementation), Intel Active Management Technology (iAMT2)'' * Die size: 111 mm2 * Steppings: L2, M0, G0 Note: The M0 and G0 Steppings have better optimizations to lower idle power consumption from 12W to 8W. Note: The E4700 uses G0 Stepping which makes it a Conroe CPU. = "Conroe" ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


SpeedStep
Enhanced SpeedStep is a series of dynamic frequency scaling technologies (codenamed Geyserville and including SpeedStep, SpeedStep II, and SpeedStep III) built into some Intel microprocessors that allow the clock speed of the processor to be dynamically changed (to different ''P-states'') by software. This allows the processor to meet the instantaneous performance needs of the operation being performed, while minimizing power draw and heat generation. EIST (SpeedStep III) was introduced in several Prescott 6 series in the first quarter of 2005, namely the Pentium 4 660. Intel Speed Shift Technology (SST) was introduced in Intel Skylake Processor. Enhanced Intel SpeedStep Technology is sometimes abbreviated as EIST. Intel's trademark of "INTEL SPEEDSTEP" was cancelled due to the trademark being invalidated in 2012. Explanation Running a processor at high clock speeds allows for better performance. However, when the same processor is run at a lower frequency (speed), it generates ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Intel VT-d
x86 virtualization is the use of hardware-assisted virtualization capabilities on an x86/x86-64 CPU. In the late 1990s x86 virtualization was achieved by complex software techniques, necessary to compensate for the processor's lack of hardware-assisted virtualization capabilities while attaining reasonable performance. In 2005 and 2006, both Intel (VT-x) and AMD ( AMD-V) introduced limited hardware virtualization support that allowed simpler virtualization software but offered very few speed benefits. Greater hardware support, which allowed substantial speed improvements, came with later processor models. Software-based virtualization The following discussion focuses only on virtualization of the x86 architecture protected mode. In protected mode the operating system kernel runs at a higher privilege such as ring 0, and applications at a lower privilege such as ring 3. In software-based virtualization, a host OS has direct access to hardware while the guest OSs have limited ac ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


SSE4
SSE4 (Streaming SIMD Extensions 4) is a SIMD CPU instruction set used in the Intel Core microarchitecture and AMD K10 (K8L). It was announced on September 27, 2006, at the Fall 2006 Intel Developer Forum, with vague details in a white paper; more precise details of 47 instructions became available at the Spring 2007 Intel Developer Forum in Beijing, in the presentation. SSE4 is fully compatible with software written for previous generations of Intel 64 and IA-32 architecture microprocessors. All existing software continues to run correctly without modification on microprocessors that incorporate SSE4, as well as in the presence of existing and new applications that incorporate SSE4. SSE4 subsets Intel SSE4 consists of 54 instructions. A subset consisting of 47 instructions, referred to as ''SSE4.1'' in some Intel documentation, is available in Penryn. Additionally, ''SSE4.2'', a second subset consisting of the 7 remaining instructions, is first available in Nehalem-based Core i7 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Wolfdale (microprocessor)
Wolfdale is the code name for a processor from Intel that is sold in varying configurations as Core 2 Duo, Celeron, Pentium and Xeon. In Intel's Tick-Tock cycle, the 2007/2008 "Tick" was Penryn microarchitecture, the shrink of the Core microarchitecture to 45 nanometers as CPUID model 23. This replaced the Conroe processor with ''Wolfdale''. The Wolfdale chips come in four sizes, with 6 MB and 3 MB L2 cache (Core 2 Duo); the smaller version is commonly called Wolfdale-3M, 2 MB L2 (Pentium), and 1 MB L2 (Celeron). The mobile version of Wolfdale is Penryn and the dual-socket server version is Wolfdale-DP. The Yorkfield desktop processor is a quad-core Multi-chip module of Wolfdale. Wolfdale was replaced by Nehalem based Clarkdale and its Sandy Bridge successor. Variants Wolfdale Wolfdale is the codename for the E8000 series of Core 2 Duo desktop processors and the Xeon 3100 server processor family. Released on January 20, 2008, the chips are manufactured using a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




LGA 771
LGA 771, also known as ''Socket J'', is a CPU interface introduced by Intel in 2006. It is used in Intel Core microarchitecture and NetBurst microarchitecture(Dempsey) based DP-capable server processors, the Dual-Core Xeon is codenamed Dempsey, Woodcrest, and Wolfdale and the Quad-Core processors Clovertown, Harpertown, and Yorkfield-CL. It is also used for the Core 2 Extreme QX9775, and blade servers designated under Conroe-CL. It was succeeded by LGA 1366 for the Nehalem-based Xeon processors. Technical specifications As its name implies, it is a land grid array with 771 contacts. The word "socket" in this instance is a misnomer, as the processor interface has no pin holes. Instead, it has 771 protruding lands which touch contact points on the underside of the microprocessor. The "J" in "Socket J" refers to the now-canceled processor codenamed " Jayhawk", which was expected to debut alongside this interface. It is intended as a successor to Socket 604 and takes muc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Transistor Count
The transistor count is the number of transistors in an electronic device (typically on a single substrate or "chip"). It is the most common measure of integrated circuit complexity (although the majority of transistors in modern microprocessors are contained in the cache memories, which consist mostly of the same memory cell circuits replicated many times). The rate at which MOS transistor counts have increased generally follows Moore's law, which observed that the transistor count doubles approximately every two years. However, being directly proportional to the area of a chip, transistor count doesn't represent how advanced corresponding manufacturing technology is, which is better characterized by transistor density instead (ratio of transistor count of a chip to its area). , the largest transistor count in a commercially available microprocessor is 114billion transistors, in Apple's ARM-based dual-die M1 Ultra system on a chip, which is fabricated using TSMC's 5 nm semicon ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Trusted Execution Technology
Intel Trusted Execution Technology (Intel TXT, formerly known as LaGrande Technology) is a computer hardware technology whose primary goals are: * Attestation of the authenticity of a platform and its operating system. * Assuring that an authentic operating system starts in a trusted environment, which can then be considered trusted. * Provision of a trusted operating system with additional security capabilities not available to an unproven one. Intel TXT uses a Trusted Platform Module (TPM) and cryptographic techniques to provide measurements of software and platform components so that system software as well as local and remote management applications may use those measurements to make trust decisions. It complements Intel Management Engine. This technology is based on an industry initiative by the Trusted Computing Group (TCG) to promote safer computing. It defends against software-based attacks aimed at stealing sensitive information by corrupting system or BIOS code, or mod ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Intel VT-x
x86 virtualization is the use of hardware-assisted virtualization capabilities on an x86/x86-64 CPU. In the late 1990s x86 virtualization was achieved by complex software techniques, necessary to compensate for the processor's lack of hardware-assisted virtualization capabilities while attaining reasonable performance. In 2005 and 2006, both Intel (VT-x) and AMD ( AMD-V) introduced limited hardware virtualization support that allowed simpler virtualization software but offered very few speed benefits. Greater hardware support, which allowed substantial speed improvements, came with later processor models. Software-based virtualization The following discussion focuses only on virtualization of the x86 architecture protected mode. In protected mode the operating system kernel runs at a higher privilege such as ring 0, and applications at a lower privilege such as ring 3. In software-based virtualization, a host OS has direct access to hardware while the guest OSs have limited ac ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pentium Dual-Core
The Pentium Dual-Core brand was used for mainstream x86-architecture microprocessors from Intel from 2006 to 2009 when it was renamed to Pentium. The processors are based on either the 32-bit '' Yonah'' or (with quite different microarchitectures) 64-bit '' Merom-2M'', '' Allendale'', and '' Wolfdale-3M'' core, targeted at mobile or desktop computers. In terms of features, price, and performance at a given clock frequency, Pentium Dual-Core processors were positioned above Celeron but below Core and Core 2 processors in Intel's product range. The Pentium Dual-Core was also a very popular choice for overclocking, as it can deliver high performance (when overclocked) at a low price. Processor cores In 2006, Intel announced a plan to return the Pentium trademark from retirement to the market, as a moniker of low-cost Core microarchitecture processors based on the single-core Conroe-L but with 1 MB of cache. The identification numbers for those planned Pentiums were similar to th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Stepping Level
In integrated circuits, the stepping level or revision level is a version number that refers to the introduction or revision of one or more photolithographic photomasks within the set of photomasks that is used to pattern an integrated circuit. The term originated from the name of the equipment ( "steppers") that exposes the photoresist to light. Integrated circuits have two primary classes of mask sets: firstly, "base" layers that are used to build the structures, such as transistors, that comprise circuit logic and, secondly, "metal" layers that connect the circuit logic. Typically, when an integrated circuit manufacturer such as Intel or AMD produces a new stepping (i.e. a revision to the masks), it is because it has found bugs in the logic, has made improvements to the design that permit faster processing, has found a way to increase yield or improve the "bin splits" (i.e. create faster transistors and thus faster CPUs), has improved maneuverability to more easily identify ma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Die (integrated Circuit)
A die, in the context of integrated circuits, is a small block of semiconducting material on which a given functional circuit is fabricated. Typically, integrated circuits are produced in large batches on a single wafer of electronic-grade silicon (EGS) or other semiconductor (such as GaAs) through processes such as photolithography. The wafer is cut (diced) into many pieces, each containing one copy of the circuit. Each of these pieces is called a die. There are three commonly used plural forms: ''dice'', ''dies'' and ''die''. To simplify handling and integration onto a printed circuit board, most dies are packaged in various forms. Manufacturing process Most dies are composed of silicon and used for integrated circuits. The process begins with the production of monocrystalline silicon ingots. These ingots are then sliced into disks with a diameter of up to 300 mm.
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]