Ling Adder
   HOME
*





Ling Adder
In electronics, a Ling adder is a particularly fast binary adder designed using H. Ling's equations and generally implemented in BiCMOS. Samuel Naffziger of Hewlett Packard presented an innovative 64 bit adder in 0.5 μm CMOS based on Ling's equations at ISSCC 1996. The Naffziger adder's delay was less than 1 nanosecond, or 7 FO4 In digital electronics, Fan-out of 4 is a measure of time used in digital CMOS technologies: the gate delay of a component with a fan-out of 4. Fan out = Cload / Cin, where :Cload = total MOS gate capacitance driven by the logic gate under con .... See Naffzinger's paper below for more details. External links # H. Ling,High Speed Binary Parallel Adder, IEEE Transactions on Electronic Computers, EC-15, p. 799-809, October, 1966. # H. Ling,High-Speed Binary Adder, IBM J. Res. Dev., vol.25, p. 156-66, 1981. # R. W. Doran,Variants on an Improved Carry Look-Ahead Adder, IEEE Transactions on Computers, Vol.37, No.9, September 1988. # N. T ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Electronics
The field of electronics is a branch of physics and electrical engineering that deals with the emission, behaviour and effects of electrons using electronic devices. Electronics uses active devices to control electron flow by amplification and rectification, which distinguishes it from classical electrical engineering, which only uses passive effects such as resistance, capacitance and inductance to control electric current flow. Electronics has hugely influenced the development of modern society. The central driving force behind the entire electronics industry is the semiconductor industry sector, which has annual sales of over $481 billion as of 2018. The largest industry sector is e-commerce, which generated over $29 trillion in 2017. History and development Electronics has hugely influenced the development of modern society. The identification of the electron in 1897, along with the subsequent invention of the vacuum tube which could amplify and rectify small ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Binary Adder
Binary may refer to: Science and technology Mathematics * Binary number, a representation of numbers using only two digits (0 and 1) * Binary function, a function that takes two arguments * Binary operation, a mathematical operation that takes two arguments * Binary relation, a relation involving two elements * Binary-coded decimal, a method for encoding for decimal digits in binary sequences * Finger binary, a system for counting in binary numbers on the fingers of human hands Computing * Binary code, the digital representation of text and data * Bit, or binary digit, the basic unit of information in computers * Binary file, composed of something other than human-readable text ** Executable, a type of binary file that contains machine code for the computer to execute * Binary tree, a computer tree data structure in which each node has at most two children Astronomy * Binary star, a star system with two stars in it * Binary planet, two planetary bodies of comparable ma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


BiCMOS
Bipolar CMOS (BiCMOS) is a semiconductor technology that integrates two semiconductor technologies, those of the bipolar junction transistor and the CMOS (complementary metal-oxide-semiconductor) logic gate, into a single integrated circuit. In more recent times the bipolar processes have been extended to include high mobility devices using silicon–germanium junctions. Bipolar transistors offer high speed, high gain, and low output impedance with relatively high power consumption per device, which are excellent properties for high-frequency analog amplifiers including low noise radio frequency (RF) amplifiers that only use a few active devices, while CMOS technology offers high input impedance and is excellent for constructing large numbers of low-power logic gates. In a BiCMOS process the doping profile and other process features may be tilted to favour either the CMOS or the bipolar devices. For example GlobalFoundries offer a basic 180 nm BiCMOS7WL process and several ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hewlett Packard
The Hewlett-Packard Company, commonly shortened to Hewlett-Packard ( ) or HP, was an American multinational information technology company headquartered in Palo Alto, California. HP developed and provided a wide variety of hardware components, as well as software and related services to consumers, small and medium-sized businesses ( SMBs), and large enterprises, including customers in the government, health, and education sectors. The company was founded in a one-car garage in Palo Alto by Bill Hewlett and David Packard in 1939, and initially produced a line of electronic test and measurement equipment. The HP Garage at 367 Addison Avenue is now designated an official California Historical Landmark, and is marked with a plaque calling it the "Birthplace of 'Silicon Valley'". The company won its first big contract in 1938 to provide test and measurement instruments for Walt Disney's production of the animated film ''Fantasia'', which allowed Hewlett and Packard to formally esta ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

CMOS
Complementary metal–oxide–semiconductor (CMOS, pronounced "sea-moss", ) is a type of metal–oxide–semiconductor field-effect transistor (MOSFET) fabrication process that uses complementary and symmetrical pairs of p-type and n-type MOSFETs for logic functions. CMOS technology is used for constructing integrated circuit (IC) chips, including microprocessors, microcontrollers, memory chips (including CMOS BIOS), and other digital logic circuits. CMOS technology is also used for analog circuits such as image sensors (CMOS sensors), data converters, RF circuits (RF CMOS), and highly integrated transceivers for many types of communication. The CMOS process was originally conceived by Frank Wanlass at Fairchild Semiconductor and presented by Wanlass and Chih-Tang Sah at the International Solid-State Circuits Conference in 1963. Wanlass later filed US patent 3,356,858 for CMOS circuitry and it was granted in 1967. commercialized the technology with the trademark "COS-MO ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


ISSCC
International Solid-State Circuits Conference is a global forum for presentation of advances in solid-state circuits and Systems-on-a-Chip. The conference is held every year in February at the San Francisco Marriott Marquis in downtown San Francisco. ISSCC is sponsored by IEEE Solid-State Circuits Society. According to ''The Register'', "The ISSCC event is the second event of each new year, following the Consumer Electronics Show, where new PC processors and sundry other computing gadgets are brought to market." History of ISSCC Early participants in the inaugural conference in 1954 belonged to the Institute of Radio Engineers (IRE) Circuit Theory Group and the IRE subcommittee of Transistor Circuits. The conference was held in Philadelphia and local chapters of IRE and American Institute of Electrical Engineers (AIEE) were in attendance. Later on AIEE and IRE would merge to become the present-day IEEE. The first conference consisted of papers from six organizations: Bel ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Nanosecond
A nanosecond (ns) is a unit of time in the International System of Units (SI) equal to one billionth of a second, that is, of a second, or 10 seconds. The term combines the SI prefix ''nano-'' indicating a 1 billionth submultiple of an SI unit (e.g. nanogram, nanometre, etc.) and ''second'', the primary unit of time in the SI. A nanosecond is equal to 1000 picoseconds or  microsecond. Time units ranging between 10 and 10 seconds are typically expressed as tens or hundreds of nanoseconds. Time units of this granularity are commonly found in telecommunications, pulsed lasers, and related aspects of electronics. Common measurements * 0.001 nanoseconds – one picosecond * 0.5 nanoseconds – the half-life of beryllium-13. * 0.96 nanoseconds – 100 Gigabit Ethernet Interpacket gap * 1.0 nanosecond – cycle time of an electromagnetic wave with a frequency of 1 GHz (1 hertz). * 1.0 nanosecond – electromagnetic wavelength of 1 light-nanosecond. Equiv ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]