Linear Medium
   HOME
*





Linear Medium
Linear medium may refer to: * A material with linear elasticity * An optical medium that obeys linear optics Linear optics is a sub-field of optics, consisting of linear systems, and is the opposite of nonlinear optics. Linear optics includes most applications of lenses, mirrors, waveplates, diffraction gratings, and many other common optical components a ... See also * Nonlinear medium (other) {{dab ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Linear Elasticity
Linear elasticity is a mathematical model of how solid objects deform and become internally stressed due to prescribed loading conditions. It is a simplification of the more general nonlinear theory of elasticity and a branch of continuum mechanics. The fundamental "linearizing" assumptions of linear elasticity are: infinitesimal strains or "small" deformations (or strains) and linear relationships between the components of stress and strain. In addition linear elasticity is valid only for stress states that do not produce yielding. These assumptions are reasonable for many engineering materials and engineering design scenarios. Linear elasticity is therefore used extensively in structural analysis and engineering design, often with the aid of finite element analysis. Mathematical formulation Equations governing a linear elastic boundary value problem are based on three tensor partial differential equations for the balance of linear momentum and six infinitesimal strain- ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Linear Optics
Linear optics is a sub-field of optics, consisting of linear systems, and is the opposite of nonlinear optics. Linear optics includes most applications of lenses, mirrors, waveplates, diffraction gratings, and many other common optical components and systems. If an optical system is linear, it has the following properties (among others): * If monochromatic light enters an unchanging linear-optical system, the output will be at the same frequency. For example, if red light enters a lens, it will still be red when it exits the lens. * The superposition principle is valid for linear-optical systems. For example, if a mirror transforms light input A into output B, and input C into output D, then an input consisting of A and C simultaneously give an output of B and D simultaneously. * Relatedly, if the input light is made more intense, then the output light is made more intense but otherwise unchanged. These properties are violated in nonlinear optics, which frequently involves high-pow ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]