HOME
*





Lindenbaum's Lemma
In mathematical logic, Lindenbaum's lemma, named after Adolf Lindenbaum, states that any consistent theory of predicate logic can be extended to a complete consistent theory. The lemma is a special case of the ultrafilter lemma for Boolean algebras, applied to the Lindenbaum algebra of a theory. Uses It is used in the proof of Gödel's completeness theorem, among other places. Extensions The effective version of the lemma's statement, "every consistent computably enumerable theory can be extended to a complete consistent computably enumerable theory," fails (provided Peano arithmetic is consistent) by Gödel's incompleteness theorem. History The lemma was not published by Adolf Lindenbaum; it is originally attributed to him by Alfred Tarski Alfred Tarski (, born Alfred Teitelbaum;School of Mathematics and Statistics, University of St Andrews ''School of Mathematics and Statistics, University of St Andrews''. January 14, 1901 – October 26, 1983) was a Polish-American logic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mathematical Logic
Mathematical logic is the study of logic, formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory. Research in mathematical logic commonly addresses the mathematical properties of formal systems of logic such as their expressive or deductive power. However, it can also include uses of logic to characterize correct mathematical reasoning or to establish foundations of mathematics. Since its inception, mathematical logic has both contributed to and been motivated by the study of foundations of mathematics. This study began in the late 19th century with the development of axiomatic frameworks for geometry, arithmetic, and Mathematical analysis, analysis. In the early 20th century it was shaped by David Hilbert's Hilbert's program, program to prove the consistency of foundational theories. Results of Kurt Gödel, Gerhard Gentzen, and others provided partial resolution to the program, and clarified the issues involved in pr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Adolf Lindenbaum
Adolf Lindenbaum (12 June 1904 – August 1941) was a Polish-Jewish logician and mathematician best known for Lindenbaum's lemma and Lindenbaum–Tarski algebras. He was born and brought up in Warsaw. He earned a Ph.D. in 1928 under Wacław Sierpiński and habilitated at the University of Warsaw in 1934. He published works on mathematical logic, set theory, cardinal and ordinal arithmetic, the axiom of choice, the continuum hypothesis, theory of functions, measure theory, point-set topology, geometry and real analysis. He served as an assistant professor at the University of Warsaw from 1935 until the outbreak of war in September 1939. He was Alfred Tarski's closest collaborator of the inter-war period. Around the end of October or beginning of November 1935 he married Janina Hosiasson, a fellow logician of the Lwow–Warsaw school. He and his wife were adherents of logical empiricism, participated in and contributed to the international unity of science movement, and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Consistent Theory
In classical deductive logic, a consistent theory is one that does not lead to a logical contradiction. The lack of contradiction can be defined in either semantic or syntactic terms. The semantic definition states that a theory is consistent if it has a model, i.e., there exists an interpretation under which all formulas in the theory are true. This is the sense used in traditional Aristotelian logic, although in contemporary mathematical logic the term ''satisfiable'' is used instead. The syntactic definition states a theory T is consistent if there is no formula \varphi such that both \varphi and its negation \lnot\varphi are elements of the set of consequences of T. Let A be a set of closed sentences (informally "axioms") and \langle A\rangle the set of closed sentences provable from A under some (specified, possibly implicitly) formal deductive system. The set of axioms A is consistent when \varphi, \lnot \varphi \in \langle A \rangle for no formula \varphi. If there exis ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Predicate Logic
First-order logic—also known as predicate logic, quantificational logic, and first-order predicate calculus—is a collection of formal systems used in mathematics, philosophy, linguistics, and computer science. First-order logic uses quantified variables over non-logical objects, and allows the use of sentences that contain variables, so that rather than propositions such as "Socrates is a man", one can have expressions in the form "there exists x such that x is Socrates and x is a man", where "there exists''"'' is a quantifier, while ''x'' is a variable. This distinguishes it from propositional logic, which does not use quantifiers or relations; in this sense, propositional logic is the foundation of first-order logic. A theory about a topic is usually a first-order logic together with a specified domain of discourse (over which the quantified variables range), finitely many functions from that domain to itself, finitely many predicates defined on that domain, and a set of ax ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Complete Theory
In mathematical logic, a theory is complete if it is consistent and for every closed formula in the theory's language, either that formula or its negation is provable. That is, for every sentence \varphi, the theory T contains the sentence or its negation but not both (that is, either T \vdash \varphi or T \vdash \neg \varphi). Recursively axiomatizable first-order theories that are consistent and rich enough to allow general mathematical reasoning to be formulated cannot be complete, as demonstrated by Gödel's first incompleteness theorem. This sense of ''complete'' is distinct from the notion of a complete ''logic'', which asserts that for every theory that can be formulated in the logic, all semantically valid statements are provable theorems (for an appropriate sense of "semantically valid"). Gödel's completeness theorem is about this latter kind of completeness. Complete theories are closed under a number of conditions internally modelling the T-schema: * For a set of for ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ultrafilter Lemma
In the mathematical field of set theory, an ultrafilter is a ''maximal proper filter'': it is a filter U on a given non-empty set X which is a certain type of non-empty family of subsets of X, that is not equal to the power set \wp(X) of X (such filters are called ) and that is also "maximal" in that there does not exist any other proper filter on X that contains it as a proper subset. Said differently, a proper filter U is called an ultrafilter if there exists proper filter that contains it as a subset, that proper filter (necessarily) being U itself. More formally, an ultrafilter U on X is a proper filter that is also a maximal filter on X with respect to set inclusion, meaning that there does not exist any proper filter on X that contains U as a proper subset. Ultrafilters on sets are an important special instance of ultrafilters on partially ordered sets, where the partially ordered set consists of the power set \wp(X) and the partial order is subset inclusion \,\subsete ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Boolean Algebra
In mathematics and mathematical logic, Boolean algebra is a branch of algebra. It differs from elementary algebra in two ways. First, the values of the variables are the truth values ''true'' and ''false'', usually denoted 1 and 0, whereas in elementary algebra the values of the variables are numbers. Second, Boolean algebra uses logical operators such as conjunction (''and'') denoted as ∧, disjunction (''or'') denoted as ∨, and the negation (''not'') denoted as ¬. Elementary algebra, on the other hand, uses arithmetic operators such as addition, multiplication, subtraction and division. So Boolean algebra is a formal way of describing logical operations, in the same way that elementary algebra describes numerical operations. Boolean algebra was introduced by George Boole in his first book ''The Mathematical Analysis of Logic'' (1847), and set forth more fully in his '' An Investigation of the Laws of Thought'' (1854). According to Huntington, the term "Boolean algebra" wa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lindenbaum Algebra
Lindenbaum is a surname, meaning ''Tilia'' in German; the nearest British tree name is Lime tree. It may refer to: * Belda Lindenbaum, Jewish philanthropist and feminist *Adolf Lindenbaum, Polish mathematician **Lindenbaum's lemma **Lindenbaum–Tarski algebra * John Lindenbaum, musician *''Der Lindenbaum'' - one of the most well-known of Schubert's songs, from the song-cycle Winterreise. *Alfred Lindon, born Alfred Lindenbaum (c.1868 - 1948), businessman and art collector *Shirley Lindenbaum, Australian anthropologist See also * Midreshet Lindenbaum Midreshet Lindenbaum (), originally named Michlelet Bruria, is a midrasha in Talpiot, Jerusalem. It counts among its alumnae many of the teachers at Matan, Nishmat, Pardes and other women's and co-ed yeshivas in Israel and abroad. History Michl ..., an institution of higher Torah learning for women in Israel {{surname German-language surnames Jewish surnames ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gödel's Completeness Theorem
Gödel's completeness theorem is a fundamental theorem in mathematical logic that establishes a correspondence between semantic truth and syntactic provability in first-order logic. The completeness theorem applies to any first-order theory: If ''T'' is such a theory, and φ is a sentence (in the same language) and every model of ''T'' is a model of φ, then there is a (first-order) proof of φ using the statements of ''T'' as axioms. One sometimes says this as "anything universally true is provable". This does not contradict Gödel's incompleteness theorem, which shows that some formula φu is unprovable although true in the natural numbers, which are a particular model of a first-order theory describing them — φu is just false in some other model of the first-order theory being considered (such as a non-standard model of arithmetic for Peano arithmetic). It makes a close link between model theory that deals with what is true in different models, and proof theory tha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Computably Enumerable
In computability theory, a set ''S'' of natural numbers is called computably enumerable (c.e.), recursively enumerable (r.e.), semidecidable, partially decidable, listable, provable or Turing-recognizable if: *There is an algorithm such that the set of input numbers for which the algorithm halts is exactly ''S''. Or, equivalently, *There is an algorithm that enumerates the members of ''S''. That means that its output is simply a list of all the members of ''S'': ''s''1, ''s''2, ''s''3, ... . If ''S'' is infinite, this algorithm will run forever. The first condition suggests why the term ''semidecidable'' is sometimes used. More precisely, if a number is in the set, one can ''decide'' this by running the algorithm, but if the number is not in the set, the algorithm runs forever, and no information is returned. A set that is "completely decidable" is a computable set. The second condition suggests why ''computably enumerable'' is used. The abbreviations c.e. and r.e. are oft ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Peano Axioms
In mathematical logic, the Peano axioms, also known as the Dedekind–Peano axioms or the Peano postulates, are axioms for the natural numbers presented by the 19th century Italian mathematician Giuseppe Peano. These axioms have been used nearly unchanged in a number of metamathematical investigations, including research into fundamental questions of whether number theory is consistent and complete. The need to formalize arithmetic was not well appreciated until the work of Hermann Grassmann, who showed in the 1860s that many facts in arithmetic could be derived from more basic facts about the successor operation and induction. In 1881, Charles Sanders Peirce provided an axiomatization of natural-number arithmetic. In 1888, Richard Dedekind proposed another axiomatization of natural-number arithmetic, and in 1889, Peano published a simplified version of them as a collection of axioms in his book, ''The principles of arithmetic presented by a new method'' ( la, Arithmet ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]