HOME
*





Lindbladian
In quantum mechanics, the Gorini–Kossakowski–Sudarshan–Lindblad equation (GKSL equation, named after Vittorio Gorini, Andrzej Kossakowski, George Sudarshan and Göran Lindblad), master equation in Lindblad form, quantum Liouvillian, or Lindbladian is one of the general forms of Markovian and time-homogeneous master equations describing the (in general non-unitary) evolution of the density matrix that preserves the laws of quantum mechanics (i.e., is trace-preserving and completely positive for any initial condition). The Schrödinger equation is a special case of the more general Lindblad equation, which has led to some speculation that quantum mechanics may be productively extended and expanded through further application and analysis of the Lindblad equation. The Schrödinger equation deals with state vectors, which can only describe pure quantum states and are thus less general than density matrices, which can describe mixed states as well. Motivation In t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Superoperator
In physics, a superoperator is a linear operator acting on a vector space of linear operators.John Preskill, Lecture notes for Quantum Computation course at CaltechCh. 3 Sometimes the term refers more specially to a completely positive map which also preserves or does not increase the trace of its argument. This specialized meaning is used extensively in the field of quantum computing, especially quantum programming, as they characterise mappings between density matrices. The use of the super- prefix here is in no way related to its other use in mathematical physics. That is to say superoperators have no connection to supersymmetry and superalgebra which are extensions of the usual mathematical concepts defined by extending the ring of numbers to include Grassmann numbers. Since superoperators are themselves operators the use of the super- prefix is used to distinguish them from the operators upon which they act. Left/Right Multiplication Defining the left and right multipl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Andrzej Kossakowski
Andrzej Marek Kossakowski (20 February 1938 – 31 January 2021) was a Polish theoretical physicist and a professor at the Nicolaus Copernicus University. He was best known for his work on open quantum systems. Education Andrzej Kossakowski was born on 20 February 1938 in Lwów, Poland (now Lviv, in Ukraine).''Sprawozdania Towarzystwa Naukowego w Toruniu. Tom 26. 1 I 1972 - 31 XII 1972'', wyd. PWN, Warszawa-Poznań 1974, s. 129-130 He attended a primary and secondary school in Sopot.''Pracownicy nauki i dydaktyki Uniwersytetu Mikołaja Kopernika 1945-1994. Materiały do biografii'', wyd. UMK, Toruń 1995, s. 358 In the years 1955-1960, he studied physics at the Nicolaus Copernicus University in Toruń. Right after graduation, he got a job at the same university, first as an assistant, then as a senior assistant in 1962. In 1966, he defended his Doctor of Philosophy, PhD thesis titled ''On the entropy increase law in informational thermodynamics of density operators'', written un ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hamiltonian (quantum Mechanics)
Hamiltonian may refer to: * Hamiltonian mechanics, a function that represents the total energy of a system * Hamiltonian (quantum mechanics), an operator corresponding to the total energy of that system ** Dyall Hamiltonian, a modified Hamiltonian with two-electron nature ** Molecular Hamiltonian, the Hamiltonian operator representing the energy of the electrons and nuclei in a molecule * Hamiltonian (control theory), a function used to solve a problem of optimal control for a dynamical system * Hamiltonian path, a path in a graph that visits each vertex exactly once * Hamiltonian group, a non-abelian group the subgroups of which are all normal * Hamiltonian economic program, the economic policies advocated by Alexander Hamilton, the first United States Secretary of the Treasury See also * Alexander Hamilton (1755 or 1757–1804), American statesman and one of the Founding Fathers of the US * Hamilton (other) Hamilton may refer to: People * Hamilton (name), a common ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Jump Operator
Jumping is a form of locomotion or movement in which an organism or non-living (e.g., robotic) mechanical system propels itself through the air along a ballistic trajectory. Jump or Jumping also may refer to: Places * Jump, Kentucky or Jump Station, an unincorporated community in Floyd County * Jump, Ohio, a community in Hardin County * Jump, South Yorkshire, a village in Barnsley, England Science and engineering * Jump discontinuity, a change in value of a mathematical function * Jump, a step in a statistical jump process * Jump, a step in a jump diffusion process * Hydraulic jump, a phenomenon in fluid dynamics Computing * Jump instruction, used to alter the control flow of a program * JumpDrive, a brand of, or a generic term for, USB flash drives * Turing jump, an operator in recursion theory Media * ''Jump'' (magazine line), a line of manga magazines ** Weekly Shōnen Jump, the best-selling magazine of the line, often referred to as just ''Jump'' * Jump (musical), a Kore ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Unital Map
In abstract algebra, a unital map on a C*-algebra is a map \phi which preserves the identity element: :\phi ( I ) = I. This condition appears often in the context of completely positive maps, especially when they represent quantum operations. If \phi is completely positive, it can always be represented as :\phi ( \rho ) = \sum_i E_i \rho E_i^\dagger. (The E_i are the Kraus operator In quantum mechanics, a quantum operation (also known as quantum dynamical map or quantum process) is a mathematical formalism used to describe a broad class of transformations that a quantum mechanical system can undergo. This was first discusse ...s associated with \phi). In this case, the unital condition can be expressed as :\sum_i E_i E_i ^\dagger= I. References * C*-algebras {{Mathanalysis-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ehrenfest Theorem
The Ehrenfest theorem, named after Paul Ehrenfest, an Austrian theoretical physicist at Leiden University, relates the time derivative of the expectation values of the position and momentum operators ''x'' and ''p'' to the expectation value of the force F=-V'(x) on a massive particle moving in a scalar potential V(x), The Ehrenfest theorem is a special case of a more general relation between the expectation of any quantum mechanical operator and the expectation of the commutator of that operator with the Hamiltonian of the system where is some quantum mechanical operator and is its expectation value. It is most apparent in the Heisenberg picture of quantum mechanics, where it amounts to just the expectation value of the Heisenberg equation of motion. It provides mathematical support to the correspondence principle. The reason is that Ehrenfest's theorem is closely related to Liouville's theorem of Hamiltonian mechanics, which involves the Poisson bracket instead of a com ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Semigroup
In mathematics, a semigroup is an algebraic structure consisting of a set together with an associative internal binary operation on it. The binary operation of a semigroup is most often denoted multiplicatively: ''x''·''y'', or simply ''xy'', denotes the result of applying the semigroup operation to the ordered pair . Associativity is formally expressed as that for all ''x'', ''y'' and ''z'' in the semigroup. Semigroups may be considered a special case of magmas, where the operation is associative, or as a generalization of groups, without requiring the existence of an identity element or inverses. The closure axiom is implied by the definition of a binary operation on a set. Some authors thus omit it and specify three axioms for a group and only one axiom (associativity) for a semigroup. As in the case of groups or magmas, the semigroup operation need not be commutative, so ''x''·''y'' is not necessarily equal to ''y''·''x''; a well-known example of an operation that is as ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quantum Dynamical Map
In quantum mechanics, a quantum operation (also known as quantum dynamical map or quantum process) is a mathematical formalism used to describe a broad class of transformations that a quantum mechanical system can undergo. This was first discussed as a general stochastic transformation for a density matrix by George Sudarshan. The quantum operation formalism describes not only unitary time evolution or symmetry transformations of isolated systems, but also the effects of measurement and transient interactions with an environment. In the context of quantum computation, a quantum operation is called a quantum channel. Note that some authors use the term "quantum operation" to refer specifically to completely positive (CP) and non-trace-increasing maps on the space of density matrices, and the term "quantum channel" to refer to the subset of those that are strictly trace-preserving. Quantum operations are formulated in terms of the density operator description of a quantum mechanica ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Unitary Transformation
In mathematics, a unitary transformation is a transformation that preserves the inner product: the inner product of two vectors before the transformation is equal to their inner product after the transformation. Formal definition More precisely, a unitary transformation is an isomorphism between two inner product spaces (such as Hilbert spaces). In other words, a ''unitary transformation'' is a bijective function U : H \to H_2\, between two inner product spaces, H and H_2, such that \langle Ux, Uy \rangle_ = \langle x, y \rangle_ \quad \text x, y \in H. Properties A unitary transformation is an isometry, as one can see by setting x=y in this formula. Unitary operator In the case when H_1 and H_2 are the same space, a unitary transformation is an automorphism of that Hilbert space, and then it is also called a unitary operator. Antiunitary transformation A closely related notion is that of antiunitary transformation, which is a bijective function :U:H_1\to H_2\, between two co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Diagonalizable Matrix
In linear algebra, a square matrix A is called diagonalizable or non-defective if it is similar to a diagonal matrix, i.e., if there exists an invertible matrix P and a diagonal matrix D such that or equivalently (Such D are not unique.) For a finite-dimensional vector space a linear map T:V\to V is called diagonalizable if there exists an ordered basis of V consisting of eigenvectors of T. These definitions are equivalent: if T has a matrix representation T = PDP^ as above, then the column vectors of P form a basis consisting of eigenvectors of and the diagonal entries of D are the corresponding eigenvalues of with respect to this eigenvector basis, A is represented by Diagonalization is the process of finding the above P and Diagonalizable matrices and maps are especially easy for computations, once their eigenvalues and eigenvectors are known. One can raise a diagonal matrix D to a power by simply raising the diagonal entries to that power, and the determi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Liouville's Theorem (Hamiltonian)
In physics, Liouville's theorem, named after the French mathematician Joseph Liouville, is a key theorem in classical statistical and Hamiltonian mechanics. It asserts that ''the phase-space distribution function is constant along the trajectories of the system''—that is that the density of system points in the vicinity of a given system point traveling through phase-space is constant with time. This time-independent density is in statistical mechanics known as the classical a priori probability. There are related mathematical results in symplectic topology and ergodic theory; systems obeying Liouville's theorem are examples of incompressible dynamical systems. There are extensions of Liouville's theorem to stochastic systems. Liouville equations The Liouville equation describes the time evolution of the ''phase space distribution function''. Although the equation is usually referred to as the "Liouville equation", Josiah Willard Gibbs was the first to recognize the impor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Anticommutator
In mathematics, the commutator gives an indication of the extent to which a certain binary operation fails to be commutative. There are different definitions used in group theory and ring theory. Group theory The commutator of two elements, and , of a group , is the element : . This element is equal to the group's identity if and only if and commute (from the definition , being equal to the identity if and only if ). The set of all commutators of a group is not in general closed under the group operation, but the subgroup of ''G'' generated by all commutators is closed and is called the ''derived group'' or the ''commutator subgroup'' of ''G''. Commutators are used to define nilpotent and solvable groups and the largest abelian quotient group. The definition of the commutator above is used throughout this article, but many other group theorists define the commutator as :. Identities (group theory) Commutator identities are an important tool in group theory. The expr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]