HOME
*





Lightface
In the mathematical field of descriptive set theory, a pointclass is a collection of sets of points, where a ''point'' is ordinarily understood to be an element of some perfect Polish space. In practice, a pointclass is usually characterized by some sort of ''definability property''; for example, the collection of all open sets in some fixed collection of Polish spaces is a pointclass. (An open set may be seen as in some sense definable because it cannot be a purely arbitrary collection of points; for any point in the set, all points sufficiently close to that point must also be in the set.) Pointclasses find application in formulating many important principles and theorems from set theory and real analysis. Strong set-theoretic principles may be stated in terms of the determinacy of various pointclasses, which in turn implies that sets in those pointclasses (or sometimes larger ones) have regularity properties such as Lebesgue measurability (and indeed universal measurability) ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Borel Hierarchy
In mathematical logic, the Borel hierarchy is a stratification of the Borel algebra generated by the open subsets of a Polish space; elements of this algebra are called Borel sets. Each Borel set is assigned a unique countable ordinal number called the rank of the Borel set. The Borel hierarchy is of particular interest in descriptive set theory. One common use of the Borel hierarchy is to prove facts about the Borel sets using transfinite induction on rank. Properties of sets of small finite ranks are important in measure theory and analysis. Borel sets The Borel algebra in an arbitrary topological space is the smallest collection of subsets of the space that contains the open sets and is closed under countable unions and complementation. It can be shown that the Borel algebra is closed under countable intersections as well. A short proof that the Borel algebra is well defined proceeds by showing that the entire powerset of the space is closed under complements and count ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Yiannis Moschovakis
Yiannis Nicholas Moschovakis ( el, Γιάννης Μοσχοβάκης; born January 18, 1938) is a set theorist, descriptive set theorist, and recursion (computability) theorist, at UCLA. His book ''Descriptive Set Theory'' (North-Holland) is the primary reference for the subject. He is especially associated with the development of the effective, or lightface, version of descriptive set theory, and he is known for the Moschovakis coding lemma that is named after him. Biography Moschovakis earned his Ph.D. from the University of Wisconsin–Madison in 1963 under the direction of Stephen Kleene, with a dissertation entitled ''Recursive Analysis''. In 2015 he was elected as a fellow of the American Mathematical Society "for contributions to mathematical logic, especially set theory and computability theory, and for exposition". For many years he has split his time between UCLA and the University of Athens (he retired from the latter in July 2005). Moschovakis is married to J ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Descriptive Set Theory
In mathematical logic, descriptive set theory (DST) is the study of certain classes of "well-behaved" subsets of the real line and other Polish spaces. As well as being one of the primary areas of research in set theory, it has applications to other areas of mathematics such as functional analysis, ergodic theory, the study of operator algebras and group actions, and mathematical logic. Polish spaces Descriptive set theory begins with the study of Polish spaces and their Borel sets. A Polish space is a second-countable topological space that is metrizable with a complete metric. Heuristically, it is a complete separable metric space whose metric has been "forgotten". Examples include the real line \mathbb, the Baire space \mathcal, the Cantor space \mathcal, and the Hilbert cube I^. Universality properties The class of Polish spaces has several universality properties, which show that there is no loss of generality in considering Polish spaces of certain restricted form ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Analytic Set
In the mathematical field of descriptive set theory, a subset of a Polish space X is an analytic set if it is a continuous image of a Polish space. These sets were first defined by and his student . Definition There are several equivalent definitions of analytic set. The following conditions on a subspace ''A'' of a Polish space ''X'' are equivalent: *''A'' is analytic. *''A'' is empty or a continuous image of the Baire space ωω. *''A'' is a Suslin space, in other words ''A'' is the image of a Polish space under a continuous mapping. *''A'' is the continuous image of a Borel set in a Polish space. *''A'' is a Suslin set, the image of the Suslin operation. *There is a Polish space Y and a Borel set B\subseteq X\times Y such that A is the projection of B; that is, : A=\. *''A'' is the projection of a closed set in the cartesian product of ''X'' with the Baire space. *''A'' is the projection of a Gδ set in the cartesian product of ''X'' with the Cantor space. An alterna ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Projective Hierarchy
In the mathematical field of descriptive set theory, a subset A of a Polish space X is projective if it is \boldsymbol^1_n for some positive integer n. Here A is * \boldsymbol^1_1 if A is analytic * \boldsymbol^1_n if the complement of A, X\setminus A, is \boldsymbol^1_n * \boldsymbol^1_ if there is a Polish space Y and a \boldsymbol^1_n subset C\subseteq X\times Y such that A is the projection of C; that is, A=\ The choice of the Polish space Y in the third clause above is not very important; it could be replaced in the definition by a fixed uncountable Polish space, say Baire space or Cantor space or the real line. Relationship to the analytical hierarchy There is a close relationship between the relativized analytical hierarchy on subsets of Baire space (denoted by lightface letters \Sigma and \Pi) and the projective hierarchy on subsets of Baire space (denoted by boldface letters \boldsymbol and \boldsymbol). Not every \boldsymbol^1_n subset of Baire space is \Sigma^1_n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Boldface
In typography, emphasis is the strengthening of words in a text with a font in a different style from the rest of the text, to highlight them. It is the equivalent of prosody stress in speech. Methods and use The most common methods in Western typography fall under the general technique of emphasis through a change or modification of font: ''italics'', boldface and . Other methods include the alteration of LETTER CASE and as well as and *additional graphic marks*. Font styles and variants The human eye is very receptive to differences in "brightness within a text body." Therefore, one can differentiate between types of emphasis according to whether the emphasis changes the " blackness" of text, sometimes referred to as typographic color. A means of emphasis that does not have much effect on blackness is the use of ''italics'', where the text is written in a script style, or ''oblique'', where the vertical orientation of each letter of the text is slanted to the left o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Determinacy
Determinacy is a subfield of set theory, a branch of mathematics, that examines the conditions under which one or the other player of a game has a winning strategy, and the consequences of the existence of such strategies. Alternatively and similarly, "determinacy" is the property of a game whereby such a strategy exists. Determinacy was introduced by Gale and Stewart in 1950, under the name "determinateness". The games studied in set theory are usually Gale–Stewart games—two-player games of perfect information in which the players make an infinite sequence of moves and there are no draws. The field of game theory studies more general kinds of games, including games with draws such as tic-tac-toe, chess, or infinite chess, or games with imperfect information such as poker. Basic notions Games The first sort of game we shall consider is the two-player game of perfect information of length ω, in which the players play natural numbers. These games are often cal ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Set Theory
Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory, as a branch of mathematics, is mostly concerned with those that are relevant to mathematics as a whole. The modern study of set theory was initiated by the German mathematicians Richard Dedekind and Georg Cantor in the 1870s. In particular, Georg Cantor is commonly considered the founder of set theory. The non-formalized systems investigated during this early stage go under the name of '' naive set theory''. After the discovery of paradoxes within naive set theory (such as Russell's paradox, Cantor's paradox and the Burali-Forti paradox) various axiomatic systems were proposed in the early twentieth century, of which Zermelo–Fraenkel set theory (with or without the axiom of choice) is still the best-known and most studied. Set theory is commonly employed as a foundational ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Singleton Set
In mathematics, a singleton, also known as a unit set or one-point set, is a set with exactly one element. For example, the set \ is a singleton whose single element is 0. Properties Within the framework of Zermelo–Fraenkel set theory, the axiom of regularity guarantees that no set is an element of itself. This implies that a singleton is necessarily distinct from the element it contains, thus 1 and are not the same thing, and the empty set is distinct from the set containing only the empty set. A set such as \ is a singleton as it contains a single element (which itself is a set, however, not a singleton). A set is a singleton if and only if its cardinality is . In von Neumann's set-theoretic construction of the natural numbers, the number 1 is ''defined'' as the singleton \. In axiomatic set theory, the existence of singletons is a consequence of the axiom of pairing: for any set ''A'', the axiom applied to ''A'' and ''A'' asserts the existence of \, which is the same ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Closed Set
In geometry, topology, and related branches of mathematics, a closed set is a set whose complement is an open set. In a topological space, a closed set can be defined as a set which contains all its limit points. In a complete metric space, a closed set is a set which is closed under the limit operation. This should not be confused with a closed manifold. Equivalent definitions By definition, a subset A of a topological space (X, \tau) is called if its complement X \setminus A is an open subset of (X, \tau); that is, if X \setminus A \in \tau. A set is closed in X if and only if it is equal to its closure in X. Equivalently, a set is closed if and only if it contains all of its limit points. Yet another equivalent definition is that a set is closed if and only if it contains all of its boundary points. Every subset A \subseteq X is always contained in its (topological) closure in X, which is denoted by \operatorname_X A; that is, if A \subseteq X then A \subseteq \oper ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]