Lie Group Action
   HOME
*





Lie Group Action
In differential geometry, a Lie group action is a group action adapted to the smooth setting: G is a Lie group, M is a smooth manifold, and the action map is differentiable. __TOC__ Definition and first properties Let \sigma: G \times M \to M, (g, x) \mapsto g \cdot x be a (left) group action of a Lie group G on a smooth manifold M; it is called a Lie group action (or smooth action) if the map \sigma is differentiable. Equivalently, a Lie group action of G on M consists of a Lie group homomorphism G \to \mathrm(M). A smooth manifold endowed with a Lie group action is also called a ''G''-manifold. The fact that the action map \sigma is smooth has a couple of immediate consequences: * the stabilizers G_x \subseteq G of the group action are closed, thus are Lie subgroups of ''G'' * the orbits G \cdot x \subseteq M of the group action are immersed submanifolds. Forgetting the smooth structure, a Lie group action is a particular case of a continuous group action. Examples For ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Differential Geometry
Differential geometry is a mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of differential calculus, integral calculus, linear algebra and multilinear algebra. The field has its origins in the study of spherical geometry as far back as antiquity. It also relates to astronomy, the geodesy of the Earth, and later the study of hyperbolic geometry by Lobachevsky. The simplest examples of smooth spaces are the plane and space curves and surfaces in the three-dimensional Euclidean space, and the study of these shapes formed the basis for development of modern differential geometry during the 18th and 19th centuries. Since the late 19th century, differential geometry has grown into a field concerned more generally with geometric structures on differentiable manifolds. A geometric structure is one which defines some notion of size, distance, shape, volume, or other rigidifying structu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Symplectic Manifold
In differential geometry, a subject of mathematics, a symplectic manifold is a smooth manifold, M , equipped with a closed nondegenerate differential 2-form \omega , called the symplectic form. The study of symplectic manifolds is called symplectic geometry or symplectic topology. Symplectic manifolds arise naturally in abstract formulations of classical mechanics and analytical mechanics as the cotangent bundles of manifolds. For example, in the Hamiltonian formulation of classical mechanics, which provides one of the major motivations for the field, the set of all possible configurations of a system is modeled as a manifold, and this manifold's cotangent bundle describes the phase space of the system. Motivation Symplectic manifolds arise from classical mechanics; in particular, they are a generalization of the phase space of a closed system. In the same way the Hamilton equations allow one to derive the time evolution of a system from a set of differential equations, the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Free Action
In mathematics, a group action on a space is a group homomorphism of a given group into the group of transformations of the space. Similarly, a group action on a mathematical structure is a group homomorphism of a group into the automorphism group of the structure. It is said that the group ''acts'' on the space or structure. If a group acts on a structure, it will usually also act on objects built from that structure. For example, the group of Euclidean isometries acts on Euclidean space and also on the figures drawn in it. For example, it acts on the set of all triangles. Similarly, the group of symmetries of a polyhedron acts on the vertices, the edges, and the faces of the polyhedron. A group action on a vector space is called a representation of the group. In the case of a finite-dimensional vector space, it allows one to identify many groups with subgroups of , the group of the invertible matrices of dimension over a field . The symmetric group acts on any set w ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Orbit Space
In celestial mechanics, an orbit is the curved trajectory of an object such as the trajectory of a planet around a star, or of a natural satellite around a planet, or of an artificial satellite around an object or position in space such as a planet, moon, asteroid, or Lagrange point. Normally, orbit refers to a regularly repeating trajectory, although it may also refer to a non-repeating trajectory. To a close approximation, planets and satellites follow elliptic orbits, with the center of mass being orbited at a focal point of the ellipse, as described by Kepler's laws of planetary motion. For most situations, orbital motion is adequately approximated by Newtonian mechanics, which explains gravity as a force obeying an inverse-square law. However, Albert Einstein's general theory of relativity, which accounts for gravity as due to curvature of spacetime, with orbits following geodesics, provides a more accurate calculation and understanding of the exact mechanics of orbital ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hausdorff Space
In topology and related branches of mathematics, a Hausdorff space ( , ), separated space or T2 space is a topological space where, for any two distinct points, there exist neighbourhoods of each which are disjoint from each other. Of the many separation axioms that can be imposed on a topological space, the "Hausdorff condition" (T2) is the most frequently used and discussed. It implies the uniqueness of limits of sequences, nets, and filters. Hausdorff spaces are named after Felix Hausdorff, one of the founders of topology. Hausdorff's original definition of a topological space (in 1914) included the Hausdorff condition as an axiom. Definitions Points x and y in a topological space X can be '' separated by neighbourhoods'' if there exists a neighbourhood U of x and a neighbourhood V of y such that U and V are disjoint (U\cap V=\varnothing). X is a Hausdorff space if any two distinct points in X are separated by neighbourhoods. This condition is the third separation axiom ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Embedded Submanifold
In mathematics, a submanifold of a manifold ''M'' is a subset ''S'' which itself has the structure of a manifold, and for which the inclusion map satisfies certain properties. There are different types of submanifolds depending on exactly which properties are required. Different authors often have different definitions. Formal definition In the following we assume all manifolds are differentiable manifolds of class ''C''''r'' for a fixed , and all morphisms are differentiable of class ''C''''r''. Immersed submanifolds An immersed submanifold of a manifold ''M'' is the image ''S'' of an immersion map ; in general this image will not be a submanifold as a subset, and an immersion map need not even be injective (one-to-one) – it can have self-intersections. More narrowly, one can require that the map be an injection (one-to-one), in which we call it an injective immersion, and define an immersed submanifold to be the image subset ''S'' together with a topology and differentia ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Compact Space
In mathematics, specifically general topology, compactness is a property that seeks to generalize the notion of a closed and bounded subset of Euclidean space by making precise the idea of a space having no "punctures" or "missing endpoints", i.e. that the space not exclude any ''limiting values'' of points. For example, the open interval (0,1) would not be compact because it excludes the limiting values of 0 and 1, whereas the closed interval ,1would be compact. Similarly, the space of rational numbers \mathbb is not compact, because it has infinitely many "punctures" corresponding to the irrational numbers, and the space of real numbers \mathbb is not compact either, because it excludes the two limiting values +\infty and -\infty. However, the ''extended'' real number line ''would'' be compact, since it contains both infinities. There are many ways to make this heuristic notion precise. These ways usually agree in a metric space, but may not be equivalent in other topologic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Proper Action
In mathematics, a group action on a space is a group homomorphism of a given group into the group of transformations of the space. Similarly, a group action on a mathematical structure is a group homomorphism of a group into the automorphism group of the structure. It is said that the group ''acts'' on the space or structure. If a group acts on a structure, it will usually also act on objects built from that structure. For example, the group of Euclidean isometries acts on Euclidean space and also on the figures drawn in it. For example, it acts on the set of all triangles. Similarly, the group of symmetries of a polyhedron acts on the vertices, the edges, and the faces of the polyhedron. A group action on a vector space is called a representation of the group. In the case of a finite-dimensional vector space, it allows one to identify many groups with subgroups of , the group of the invertible matrices of dimension over a field . The symmetric group acts on any set with ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Vertical And Horizontal Bundles
In mathematics, the vertical bundle and the horizontal bundle are vector bundles associated to a smooth fiber bundle. More precisely, given a smooth fiber bundle \pi\colon E\to B, the vertical bundle VE and horizontal bundle HE are subbundles of the tangent bundle TE of E whose Whitney sum satisfies VE\oplus HE\cong TE. This means that, over each point e\in E, the fibers V_eE and H_eE form complementary subspaces of the tangent space T_eE. The vertical bundle consists of all vectors that are tangent to the fibers, while the horizontal bundle requires some choice of complementary subbundle. To make this precise, define the vertical space V_eE at e\in E to be \ker(d\pi_e). That is, the differential d\pi_e\colon T_eE\to T_bB (where b=\pi(e)) is a linear surjection whose kernel has the same dimension as the fibers of \pi. If we write F=\pi^(b), then V_eE consists of exactly the vectors in T_eE which are also tangent to F. The name is motivated by low-dimensional examples like the triv ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lie–Palais Theorem
In differential geometry, the Lie–Palais theorem states that an Group action (mathematics), action of a finite-dimensional Lie algebra on a Differentiable manifold, smooth compact manifold can be lifted to an action of a finite-dimensional Lie group. For manifolds with boundary the action must preserve the boundary, in other words the vector fields on the boundary must be tangent to the boundary. proved it as a global form of an earlier local theorem due to Sophus Lie. The example of the vector field ''d''/''dx'' on the open unit interval shows that the result is false for non-compact manifolds. Without the assumption that the Lie algebra is finite dimensional the result can be false. gives the following example due to Omori: the Lie algebra is all vector fields ''f''(''x'',''y'')∂/∂''x'' + ''g''(''x'',''y'')∂/∂y acting on the torus R2/Z2 such that ''g''(''x'', ''y'') = 0 for 0 ≤ ''x'' ≤ 1/2. This Lie algebra is not the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Fundamental Vector Field
In the study of mathematics and especially differential geometry, fundamental vector fields are an instrument that describes the infinitesimal behaviour of a smooth Lie group action on a smooth manifold. Such vector fields find important applications in the study of Lie theory, symplectic geometry, and the study of Hamiltonian group actions. Motivation Important to applications in mathematics and physics is the notion of a flow on a manifold. In particular, if M is a smooth manifold and X is a smooth vector field, one is interested in finding integral curves to X . More precisely, given p \in M one is interested in curves \gamma_p: \mathbb R \to M such that : \gamma_p'(t) = X_, \qquad \gamma_p(0) = p, for which local solutions are guaranteed by the Existence and Uniqueness Theorem of Ordinary Differential Equations. If X is furthermore a complete vector field, then the flow of X , defined as the collection of all integral curves for X , is a diffeomorphism of M. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Tangent Vector
In mathematics, a tangent vector is a vector that is tangent to a curve or surface at a given point. Tangent vectors are described in the differential geometry of curves in the context of curves in R''n''. More generally, tangent vectors are elements of a tangent space of a differentiable manifold. Tangent vectors can also be described in terms of germs. Formally, a tangent vector at the point x is a linear derivation of the algebra defined by the set of germs at x. Motivation Before proceeding to a general definition of the tangent vector, we discuss its use in calculus and its tensor properties. Calculus Let \mathbf(t) be a parametric smooth curve. The tangent vector is given by \mathbf'(t), where we have used a prime instead of the usual dot to indicate differentiation with respect to parameter . The unit tangent vector is given by \mathbf(t) = \frac\,. Example Given the curve \mathbf(t) = \left\ in \R^3, the unit tangent vector at t = 0 is given by \mathbf(0) = \frac = ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]