HOME
*





Li's Criterion
In number theory, Li's criterion is a particular statement about the positivity of a certain sequence that is equivalent to the Riemann hypothesis. The criterion is named after Xian-Jin Li, who presented it in 1997. In 1999, Enrico Bombieri and Jeffrey C. Lagarias provided a generalization, showing that Li's positivity condition applies to any collection of points that lie on the Re(''s'') = 1/2 axis. Definition The Riemann function is given by :\xi (s)=\fracs(s-1) \pi^ \Gamma \left(\frac\right) \zeta(s) where ζ is the Riemann zeta function. Consider the sequence :\lambda_n = \frac \left. \frac \left ^ \log \xi(s) \right\_. Li's criterion is then the statement that :''the Riemann hypothesis is equivalent to the statement that \lambda_n > 0 for every positive integer n.'' The numbers \lambda_n (sometimes defined with a slightly different normalization) are called Keiper-Li coefficients or Li coefficients. They may also be expressed in terms of the non-trivial zeros of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Number Theory
Number theory (or arithmetic or higher arithmetic in older usage) is a branch of pure mathematics devoted primarily to the study of the integers and arithmetic function, integer-valued functions. German mathematician Carl Friedrich Gauss (1777–1855) said, "Mathematics is the queen of the sciences—and number theory is the queen of mathematics."German original: "Die Mathematik ist die Königin der Wissenschaften, und die Arithmetik ist die Königin der Mathematik." Number theorists study prime numbers as well as the properties of mathematical objects made out of integers (for example, rational numbers) or defined as generalizations of the integers (for example, algebraic integers). Integers can be considered either in themselves or as solutions to equations (Diophantine geometry). Questions in number theory are often best understood through the study of Complex analysis, analytical objects (for example, the Riemann zeta function) that encode properties of the integers, primes ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Riemann Hypothesis
In mathematics, the Riemann hypothesis is the conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part . Many consider it to be the most important unsolved problem in pure mathematics. It is of great interest in number theory because it implies results about the distribution of prime numbers. It was proposed by , after whom it is named. The Riemann hypothesis and some of its generalizations, along with Goldbach's conjecture and the twin prime conjecture, make up Hilbert's eighth problem in David Hilbert's list of twenty-three unsolved problems; it is also one of the Clay Mathematics Institute's Millennium Prize Problems, which offers a million dollars to anyone who solves any of them. The name is also used for some closely related analogues, such as the Riemann hypothesis for curves over finite fields. The Riemann zeta function ζ(''s'') is a function whose argument ''s'' may be any complex number ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Enrico Bombieri
Enrico Bombieri (born 26 November 1940, Milan) is an Italian mathematician, known for his work in analytic number theory, Diophantine geometry, complex analysis, and group theory. Bombieri is currently Professor Emeritus in the School of Mathematics at the Institute for Advanced Study in Princeton, New Jersey. Bombieri won the Fields Medal in 1974 for his contributions to large sieve mathematics, conceptualized by Linnick 1941, and its application to the distribution of prime numbers. Career Bombieri published his first mathematical paper in 1957 when he was 16 years old. In 1963 at age 22 he earned his first degree (Laurea) in mathematics from the Università degli Studi di Milano under the supervision of Giovanni Ricci and then studied at Trinity College, Cambridge with Harold Davenport. Bombieri was an assistant professor (1963–1965) and then a full professor (1965–1966) at the Università di Cagliari, at the Università di Pisa in 1966–1974, and then at the Scuola No ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Jeffrey C
Jeffrey may refer to: * Jeffrey (name), including a list of people with the name * ''Jeffrey'' (1995 film), a 1995 film by Paul Rudnick, based on Rudnick's play of the same name * ''Jeffrey'' (2016 film), a 2016 Dominican Republic documentary film *Jeffrey's, Newfoundland and Labrador, Canada *Jeffrey City, Wyoming, United States *Jeffrey Street, Sydney, Australia * Jeffrey's sketch, a sketch on American TV show ''Saturday Night Live'' *'' Nurse Jeffrey'', a spin-off miniseries from the American medical drama series ''House, MD'' *Jeffreys Bay, Western Cape, South Africa People with the surname * Alexander Jeffrey (1806–1874), Scottish solicitor and historian * Charles Jeffrey (footballer) (died 1915), Scottish footballer * E. C. Jeffrey (1866–1952), Canadian-American botanist *Grant Jeffrey (1948–2012), Canadian writer *Hester C. Jeffrey (1842–1934), American activist, suffragist and community organizer *Richard Jeffrey (1926–2002), American philosopher, logician, and pro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Riemann Xi Function
In mathematics, the Riemann Xi function is a variant of the Riemann zeta function, and is defined so as to have a particularly simple functional equation. The function is named in honour of Bernhard Riemann. Definition Riemann's original lower-case "xi"-function, \xi was renamed with an upper-case ~\Xi~ ( Greek letter "Xi") by Edmund Landau. Landau's lower-case ~\xi~ ("xi") is defined as :\xi(s) = \frac s(s-1) \pi^ \Gamma\left(\frac\right) \zeta(s) for s \in \mathbb. Here \zeta(s) denotes the Riemann zeta function and \Gamma(s) is the Gamma function. The functional equation (or reflection formula) for Landau's ~\xi~ is :\xi(1-s) = \xi(s)~. Riemann's original function, rebaptised upper-case ~\Xi~ by Landau, satisfies :\Xi(z) = \xi \left(\tfrac + z i \right), and obeys the functional equation :\Xi(-z) = \Xi(z)~. Both functions are entire and purely real for real arguments. Values The general form for positive even integers is :\xi(2n) = (-1)^\fracB_2^\pi^(2n-1) where ''Bn'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Riemann Zeta Function
The Riemann zeta function or Euler–Riemann zeta function, denoted by the Greek letter (zeta), is a mathematical function of a complex variable defined as \zeta(s) = \sum_^\infty \frac = \frac + \frac + \frac + \cdots for \operatorname(s) > 1 and its analytic continuation elsewhere. The Riemann zeta function plays a pivotal role in analytic number theory, and has applications in physics, probability theory, and applied statistics. Leonhard Euler first introduced and studied the function over the reals in the first half of the eighteenth century. Bernhard Riemann's 1859 article "On the Number of Primes Less Than a Given Magnitude" extended the Euler definition to a complex variable, proved its meromorphic continuation and functional equation, and established a relation between its zeros and the distribution of prime numbers. This paper also contained the Riemann hypothesis, a conjecture about the distribution of complex zeros of the Riemann zeta function that is consid ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Conditionally Convergent
In mathematics, a series or integral is said to be conditionally convergent if it converges, but it does not converge absolutely. Definition More precisely, a series of real numbers \sum_^\infty a_n is said to converge conditionally if \lim_\,\sum_^m a_n exists (as a finite real number, i.e. not \infty or -\infty), but \sum_^\infty \left, a_n\ = \infty. A classic example is the alternating harmonic series given by 1 - + - + - \cdots =\sum\limits_^\infty , which converges to \ln (2), but is not absolutely convergent (see Harmonic series). Bernhard Riemann proved that a conditionally convergent series may be rearranged to converge to any value at all, including ∞ or −∞; see ''Riemann series theorem''. The Lévy–Steinitz theorem identifies the set of values to which a series of terms in R''n'' can converge. A typical conditionally convergent integral is that on the non-negative real axis of \sin (x^2) (see Fresnel integral). See also *Absolute convergen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Functional Equation
In mathematics, a functional equation is, in the broadest meaning, an equation in which one or several functions appear as unknowns. So, differential equations and integral equations are functional equations. However, a more restricted meaning is often used, where a ''functional equation'' is an equation that relates several values of the same function. For example, the logarithm functions are essentially characterized by the ''logarithmic functional equation'' \log(xy)=\log(x) + \log(y). If the domain of the unknown function is supposed to be the natural numbers, the function is generally viewed as a sequence, and, in this case, a functional equation (in the narrower meaning) is called a recurrence relation. Thus the term ''functional equation'' is used mainly for real functions and complex functions. Moreover a smoothness condition is often assumed for the solutions, since without such a condition, most functional equations have very irregular solutions. For example, the ga ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Weil's Criterion
In mathematics, Weil's criterion is a criterion of André Weil for the Generalized Riemann hypothesis to be true. It takes the form of an equivalent statement, to the effect that a certain generalized function is positive definite. Weil's idea was formulated first in a 1952 paper. It is based on the explicit formulae of prime number theory, as they apply to Dirichlet L-functions, and other more general global L-functions. A single statement thus combines statements on the complex zeroes of ''all'' Dirichlet L-functions. Weil returned to this idea in a 1972 paper, showing how the formulation extended to a larger class of L-functions ( Artin-Hecke L-functions); and to the global function field case. Here the inclusion of Artin L-function In mathematics, an Artin ''L''-function is a type of Dirichlet series associated to a linear representation ρ of a Galois group ''G''. These functions were introduced in 1923 by Emil Artin, in connection with his research into class field theory. T ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Journal Of Number Theory
The ''Journal of Number Theory'' (''JNT'') is a bimonthly peer-reviewed scientific journal covering all aspects of number theory. The journal was established in 1969 by R.P. Bambah, P. Roquette, A. Ross, A. Woods, and H. Zassenhaus (Ohio State University). It is currently published monthly by Elsevier and the editor-in-chief is Dorian Goldfeld (Columbia University). According to the ''Journal Citation Reports'', the journal has a 2020 impact factor The impact factor (IF) or journal impact factor (JIF) of an academic journal is a scientometric index calculated by Clarivate that reflects the yearly mean number of citations of articles published in the last two years in a given journal, as i ... of 0.72. References External links * Number theory Mathematics journals Publications established in 1969 Elsevier academic journals Monthly journals English-language journals {{math-journal-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Numerical Algorithms
Numerical may refer to: * Number * Numerical digit * Numerical analysis Numerical analysis is the study of algorithms that use numerical approximation (as opposed to symbolic manipulations) for the problems of mathematical analysis (as distinguished from discrete mathematics). It is the study of numerical methods ...
{{disambig ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]